References

1. S Toda, S Aoki, K Uchihashi, A Matsunobu, M Yamamoto, A Ootani, F Yamasaki, E Koike, H Sugihara 2011 Culture models for studying thyroid biology and disorders. ISRN Endocrinol 2011:275782.

2. P Rotman-Pikielny, K Hirschberg, P Maruvada, K Suzuki, IE Royaux, ED Green, LD Kohn, J Lippincott-Schwartz, PM Yen 2002 Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Hum Mol Genet 11:2625–2633.

3. JP Taylor, RA Metcalfe, PF Watson, AP Weetman, RC Trembath 2002 Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. J Clin Endocrinol Metab 87:1778–1784.

4. SJ Weiss, NJ Philp, FS Ambesi-Impiombato, EF Grollman 1984 Thyrotropin-stimulated iodide transport mediated by adenosine 3,5-monophosphate and dependent on protein synthesis. Endocrinology 114:1099–1107.

5. SJ Weiss, NJ Philp, EF Grollman 1984 Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca2+. Endocrinology 114:1108–1113.

6. SJ Weiss, NJ Philp, EF Grollman 1984 Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 114:1090–1098.

7. O Dohán, C Portulano, C Basquin, A Reyna-Neyra, LM Amzel, N Carrasco 2007 The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc Natl Acad Sci USA 104:20250–20255.

8. P Biddinger 2009 Normal anatomy and histology In: Y Nikiforov, L Thompson, P Biddinger (eds.) Diagnostic Surgical Pathology and Molecular Genetics of the Thyroid. Lippincott Williams and Wilkins, Philadelphia, pp 1–10.

9. C Penel, JB Rognoni, P Bastiani 1987 Thyroid autoregulation: impact on thyroid structure and function in rats. Am J Physiol Endocrinol Metab 253:E165–E172.

10. H Fujita 1988 Functional morphology of the thyroid. Int Rev Cytol 113:145–185.

11. M Delverdier, P Cabanie, N Roome, F Enjalbert, G Van Haverbeke 1991 Critical analysis of the histomorphometry of rat thyroid after treatment with thyroxin and propylthiouracil. Ann Rech Vet 22:373–378.

12. JF Leatherland, RA Sonstegard 1980 Structure of thyroid and adrenal glands in rats fed diets of Great Lakes coho salmon (Oncorhynchus kisutch). Environ Res 23:77–86.

13. Z Kmiec, G Kotlarz, B Smiechowska, A Mysliwski 1998 The effect of fasting and refeeding on thyroid follicule structure and thyroid hormone levels in young and old rats. Arch Gerontol Geriatr 26:161–175.

14. JF Denef, AC Cordier, M Mesquita, S Haumont 1979 The influence of fixation procedure, embedding medium and section thickness on morphometric data in thyroid gland. Histochemistry 63:163–171.

15. LM Asmis, J Kaempf, C Von Gruenigen, ET Kimura, HE Wagner, H Studer 1996 Acquired and naturally occurring resistance of thyroid follicular cells to the growth inhibitory action of transforming growth factor-beta 1 (TGF-beta 1). J Endocrinol 149:485–496.

16. D Cauvi, C Penel, MC Nlend, N Venot, C Allasia, O Chabaud 2000 Regulation of thyroid cell volumes and fluid transport: opposite effects of TSH and iodide on cultured cells. Am J Physiol Endocrinol Metab 279:E546–E553.

17. M Schurch, HJ Peter, H Gerber, H Studer 1990 Cold follicles in a multinodular human goiter arise partly from a failing iodide pump and partly from deficient iodine organification. J Clin Endocrinol Metab 71:1224–1229.

18. H Gerber, H Studer, and C von Grunigen 1985 Paradoxical effects of thyrotropin on diffusion of thyroglobulin in the colloid of rat thyroid follicles after long term thyroxine treatment. Endocrinology 116:303–310.

19. HJ Peter, H Gerber, H Studer, DV Becker, ME Peterson 1987 Autonomy of growth and of iodine metabolism in hyperthyroid feline goiters transplanted onto nude mice. J Clin Invest 80:491–498.

20. M Senou, MJ Costa, C Massart, M Thimmesch, C Khalifa, S Poncin, M Boucquey, AC Gerard, JN Audinot, C Dessy, J Ruf, O Feron, O Devuyst, Y Guiot, JE Dumont, J Van Sande, MC Many 2009 Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice. Am J Physiol Endocrinol Metab 297:E438–E451.

21. M Elbast, TD Wu, F Guiraud-Vitaux, A Petiet, E Hindie, C Champion, A Croisy, JL Guerquin-Kern, N Colas-Linhart 2008 [Kinetics of intracolloidal iodine within the thyroid of newborn rats. Direct imagery using secondary ion mass spectrometry]. C R Biol 331:13–22. (In French.)

22. AC Gerard, S Poncin, B Caetano, P Sonveaux, JN Audinot, O Feron, IM Colin, F Soncin 2008 Iodine deficiency induces a thyroid stimulating hormone-independent early phase of microvascular reshaping in the thyroid. Am J Pathol 172:748–760.

23. ME Burgi-Saville, H Gerber, HJ Peter, M Paulsson, D Aeschlimann, C Glaser, J Kaempf, C Ruchti, I Sidiropoulos, U Burgi 1997 Expression patterns of extracellular matrix components in native and cultured normal human thyroid tissue and in human toxic adenoma tissue. Thyroid 7:347–356.

24. ET Kimura, P Kopp, J Zbaeren, LM Asmis, C Ruchti, RM Maciel, H Studer 1999 Expression of transforming growth factor beta1, beta2, and beta3 in multinodular goiters and differentiated thyroid carcinomas: a comparative study. Thyroid 9:119–125.

25. IL Wapnir, M van de Rijn, K Nowels, PS Amenta, K Walton, K Montgomery, RS Greco, O Dohan, N Carrasco 2003 Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab 88:1880–1888.

26. CR Chen, GD Chazenbalk, KA Wawrowsky, SM McLachlan, B Rapoport 2006 Evidence that human thyroid cells express uncleaved, single-chain thyrotropin receptors on their surface. Endocrinology 147:3107–3113.

27. F Bernier-Valentin, Z Kostrouch, R Rabilloud, Y Munari-Silem, B Rousset 1990 Coated vesicles from thyroid cells carry iodinated thyroglobulin molecules. First indication for an internalization of the thyroid prohormone via a mechanism of receptor-mediated endocytosis. J Biol Chem 265:17373–17380.

28. P Kopp 2005 Thyroid hormone synthesis: thyroid iodine metabolism In: L Braverman, R Utiger (eds.) Werner and Ingbar’s The Thyroid: A Fundamental and Clinical Text, 9th edition. Lippincott, Williams & Wilkins, Philadelphia, pp 52–76.

29. G Dai, O Levy, N Carrasco 1996 Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460.

30. O Dohán, A De la Vieja, V Paroder, C Riedel, M Artani, M Reed, CS Ginter, N Carrasco 2003 The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24:48–77.

31. M Nilsson, U Björkman, R Ekholm, LE Ericson 1990 Iodide transport in primary cultured thyroid follicle cells: evidence of a TSH-regulated channel mediating iodide efflux selectively across the apical domain of the plasma membrane. Eur J Cell Biol 52:270–281.

32. P Golstein, M Abramow, JE Dumont, R Beauwens 1992 The iodide channel of the thyroid: a plasma membrane vesicle study. Am J Physiol 263:C590–C597.

33. L Pesce, A Bizhanova, JC Caraballo, W Westphal, ML Butti, A Comellas, P Kopp 2012 TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 153:512–521.

34. N Shcheynikov, D Yang, Y Wang, W Zeng, LP Karniski, I So, SM Wall, S Muallem 2008 The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. J Physiol 586:3813–3824.

35. S Dossena, A Bizhanova, C Nofziger, E Bernardinelli, J Ramsauer, P Kopp, M Paulmichl 2011 Identification of allelic variants of pendrin (SLC26A4) with loss and gain of function. Cell Physiol Biochem 28:467–476.

36. S Dossena, S Rodighiero, V Vezzoli, C Bazzini, C Sironi, G Meyer, J Furst, M Ritter, ML Garavaglia, L Fugazzola, L Persani, P Zorowka, C Storelli, P Beck-Peccoz, G Bottá, M Paulmichl 2006 Fast fluorometric method for measuring pendrin (SLC26A4) Cl-/I- transport activity. Cell Physiol Biochem 18:67–74.

37. S Dossena, S Rodighiero, V Vezzoli, C Nofziger, E Salvioni, M Boccazzi, E Grabmayer, G Botta, G Meyer, L Fugazzola, P Beck-Peccoz, M Paulmichl 2009 Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J Mol Endocrinol 43:93–103.

38. N Tran, L Valentin-Blasini, BC Blount, CG McCuistion, MS Fenton, E Gin, A Salem, JM Hershman 2008 Thyroid-stimulating hormone increases active transport of perchlorate into thyroid cells. Am J Physiol Endocrinol Metab 294:E802–E806.

39. M Nilsson, U Björkman, R Ekholm, LE Ericson 1992 Polarized efflux of iodide in porcine thyrocytes occurs via a cAMP-regulated iodide channel in the apical plasma membrane. Acta Endocrinol (Copenh) 126:67–74.

40. MP Gillam, A Sidhaye, EJ Lee, J Rutishauser, C Waeber Stephan, P Kopp 2004 Functional characterization of pendrin in a polarized cell system: evidence for pendrin-mediated apical iodide efflux. J Biol Chem 279:13004–13010.

41. LS Zuckier, O Dohan, Y Li, CJ Chang, N Carrasco, E Dadachova 2004 Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo. J Nucl Med 45:500–507.

42. MD Reed-Tsur, A De la Vieja, CS Ginter, N Carrasco 2008 Molecular characterization of V59E NIS, a Na+/I- symporter mutant that causes congenital I- transport defect. Endocrinology 149:3077–3084.

43. IV Scholz, N Cengic, CH Baker, KJ Harrington, K Maletz, ER Bergert, R Vile, B Goke, JC Morris, C Spitzweg 2005 Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer. Gene Ther 12:272–280.

44. C Spitzweg, JC Morris 2002 The sodium iodide symporter: its pathophysiological and therapeutic implications. Clinical Endocrinol (Oxf) 57:559–574.

45. H Grasberger, X De Deken, OB Mayo, H Raad, M Weiss, XH Liao, S Refetoff 2012 Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol 26:481–492.

46. R Rocchi, T Kunavisarut, P Ladenson, P Caturegli 2006 Thyroid uptake of radioactive iodine and scintigraphy in mice. Thyroid 16:705–706.

47. MF van den Hove, K Croizet-Berger, F Jouret, SE Guggino, WB Guggino, O Devuyst, PJ Courtoy 2006 The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147:1287–1296.

48. J Reinfelder, S Maschauer, CA Foss, S Nimmagadda, V Fremont, V Wolf, BD Weintraub, MG Pomper, MW Szkudlinski, T Kuwert, O. Prante Effects of recombinant human thyroid-stimulating hormone superagonists on thyroidal uptake of 18F-fluorodeoxyglucose and radioiodide. Thyroid 21:783–792.

49. RM Colzani, S Alex, SL Fang, LE Braverman, CH Emerson 1998 The effect of recombinant human thyrotropin (rhTSH) on thyroid function in mice and rats. Thyroid 8:797–801.

50. TE Hilditch, PW Horton, DC McCruden, RE Young, WD Alexander 1982 Defects in intrathyroid binding of iodine and the perchlorate discharge test. Acta Endocrinol (Copenh) 100:237–244.

51. CK Atterwill, P Collins, CG Brown, RF Harland 1987 The perchlorate discharge test for examining thyroid function in rats. J Pharmacol Methods 18:199–203.

52. G Coelho-Palermo Cunha, B van Ravenzwaay 2007 Standardization of the perchlorate discharge assay for thyroid toxicity testing in rats. Regul Toxicol Pharmacol 48:270–278.

53. D Dingli, BJ Kemp, MK O’Connor, JC Morris, SJ Russell, VJ Lowe 2006 Combined I-124 positron emission tomography/computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol Imaging Biol 8:16–23.

54. J Unger, JM Boeynaems, A Van Herle, J Van Sande, P Rocmans, J Mockel 1979 In vitro nonbutanol-extractable iodine release in dog thyroid. Endocrinology 105:225–231.

55. PR Franken, J Guglielmi, C Vanhove, M Koulibaly, M Defrise, J Darcourt, T Pourcher 2010 Distribution and dynamics of (99m)Tc-pertechnetate uptake in the thyroid and other organs assessed by single-photon emission computed tomography in living mice. Thyroid 20:519–526.

56. MP Brandt, RT Kloos, DH Shen, X Zhang, YY Liu, SM Jhiang 2012 Micro-single-photon emission computed tomography image acquisition and quantification of sodium-iodide symporter-mediated radionuclide accumulation in mouse thyroid and salivary glands. Thyroid 22:617–624.

57. M Emanuelsson 2006 Development of an animal in vivo 124I-microPET/microCAT imaging model of the thyroid [MS thesis]. Medical Radiation Physics Clinical Sciences. Lund University, Lund, Sweden.

58. D Chakravarty, E Santos, M Ryder, JA Knauf, XH Liao, BL West, G Bollag, R Kolesnick, TH Thin, N Rosen, P Zanzonico, SM Larson, S Refetoff, R Ghossein, JA Fagin 2011 Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 121:4700–4711.

59. G Renault, P Bonnin, C Marchiol-Fournigault, JM Gregoire, S Serriere, B Richard, D Fradelizi 2006 [High-resolution ultrasound imaging of the mouse]. J Radiol 87:1937–1945. (In French.)

60. FS Foster, MY Zhang, YQ Zhou, G Liu, J Mehi, E Cherin, KA Harasiewicz, BG Starkoski, L Zan, DA Knapik, SL Adamson 2002 A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol 28:1165–1172.

61. M Mancini, E Vergara, G Salvatore, A Greco, G Troncone, A Affuso, R Liuzzi, P Salerno, M Scotto di Santolo, M Santoro, A Brunetti, M Salvatore 2009 Morphological ultrasound microimaging of thyroid in living mice. Endocrinology 150:4810–4815.

62. FW Wassen, AE Schiel, GG Kuiper, E Kaptein, O Bakker, TJ Visser, WS Simonides 2002 Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815.

63. WS Simonides, MA Mulcahey, EM Redout, A Muller, MJ Zuidwijk, TJ Visser, FW Wassen, A Crescenzi, WS da-Silva, J Harney, FB Engel, MJ Obregon, PR Larsen, AC Bianco, SA Huang 2008 Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 118:975–983.

64. CB Ueta, BN Oskouei, EL Olivares, JR Pinto, MM Correa, G Simovic, WS Simonides, JM Hare, AC Bianco 2012 Absence of myocardial thyroid hormone inactivating deiodinase results in restrictive cardiomyopathy in mice. Mol Endocrinol 26:809–818.

65. S Jo, I Kalló, Z Bardoczi, EDR Arrojo, A Zeold, Z Liposits, A Oliva, VP Lemmon, JL Bixby, B Gereben, AC Bianco 2012 Neuronal hypoxia induces hsp40-mediated nuclear import of type 3 deiodinase as an adaptive mechanism to reduce cellular metabolism. J Neurosci 32:8491–8500.

66. AC Bianco, JE Silva 1988 Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am J Physiol 255:E496–E503.

67. AM Ferrara, XH Liao, P Gil-Ibanez, T Marcinkowski, J Bernal, RE Weiss, AM Dumitrescu, S Refetoff 2013 Changes in thyroid status during perinatal development of MCT8-deficient male mice. Endocrinology 154:2533–2541.

68. J Pohlenz, A Maqueem, K Cua, RE Weiss, J Van Sande, S Refetoff 1999 Improved radioimmunoassay for measurement of mouse thyrotropin in serum: strain differences in thyrotropin concentration and thyrotroph sensitivity to thyroid hormone. Thyroid 9:1265–1271.

69. JA Hall, S Ribich, MA Christoffolete, G Simovic, M Correa-Medina, ME Patti, AC Bianco 2010 Absence of thyroid hormone activation during development underlies a permanent defect in adaptive thermogenesis. Endocrinology 151:4573–4582.

70. R Calvo, G Morreale de Escobar, F Escobar del Rey, MJ Obregon 1997 Maternal nonthyroidal illness and fetal thyroid hormone status, as studied in the streptozotocin-induced diabetes mellitus rat model. Endocrinology 138:1159–1169.

71. PE Pedraza, MJ Obregon, HF Escobar-Morreale, F Escobar del Rey, G Morreale de Escobar 2006 Mechanisms of adaptation to iodine deficiency in rats: thyroid status is tissue specific. Its relevance for man. Endocrinology 147:2098–2108.

72. AM Zavacki, H Ying, MA Christoffolete, G Aerts, E So, JW Harney, SY Cheng, PR Larsen, AC Bianco 2005 Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 146:1568–1575.

73. N Soukhova, OP Soldin, SJ Soldin 2004 Isotope dilution tandem mass spectrometric method for T4/T3. Clin Chim Acta 343:185–190.

74. S Piehl, T Heberer, G Balizs, TS Scanlan, J Kohrle 2008 Development of a validated liquid chromatography/tandem mass spectrometry method for the distinction of thyronine and thyronamine constitutional isomers and for the identification of new deiodinase substrates. Rapid Commun Mass Spectrom 22:3286–3296.

75. S Göthe, Z Wang, L Ng, JM Kindblom, AC Barros, C Ohlsson, B Vennstrom, D Forrest 1999 Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 13:1329–1341.

76. J Perret, M Ludgate, F Libert, C Gerard, JE Dumont, G Vassart, M Parmentier 1990 Stable expression of the human TSH receptor in CHO cells and characterization of differentially expressing clones. Biochem Biophys Res Commun 171:1044–1050.

77. G Brooker, JF Harper, WL Terasaki, RD Moylan 1979 Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res 10:1–33.

78. L Persani, C Asteria, M Tonacchera, P Vitti, V Krishna, K Chatterjee, P Beck-Peccoz 1994 Evidence for the secretion of thyrotropin with enhanced bioactivity in syndromes of thyroid hormone resistance. J Clin Endocrinol Metab 78:1034–1039.

79. LC Moeller, M Alonso, X Liao, V Broach, A Dumitrescu, J Van Sande, L Montanelli, S Skjei, C Goodwin, H Grasberger, S Refetoff, RE Weiss 2007 Pituitary-thyroid setpoint and thyrotropin receptor expression in consomic rats. Endocrinology 148:4727–4733.

80. M Yamada, Y Saga, N Shibusawa, J Hirato, M Murakami, T Iwasaki, K Hashimoto, T Satoh, K Wakabayashi, MM Taketo, M Mori 1997 Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci USA 94:10862–10867.

81. LC Moeller, S Kimura, T Kusakabe, XH Liao, J Van Sande, S Refetoff 2003 Hypothyroidism in thyroid transcription factor 1 haploinsufficiency is caused by reduced expression of the thyroid-stimulating hormone receptor. Mol Endocrinol 17:2295–2302.

82. I Astapova, KR Vella, P Ramadoss, KA Holtz, BA Rodwin, XH Liao, RE Weiss, MA Rosenberg, A Rosenzweig, AN Hollenberg 2011 The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis. Mol Endocrinol 25:212–224.

83. G Morreale de Escobar, R Pastor, MJ Obregon, F Escobar del Rey 1985 Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology 117:1890–1900.

84. B Gereben, AM Zavacki, S Ribich, BW Kim, SA Huang, WS Simonides, A Zeold, AC Bianco 2008 Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29:898–938.

85. PR Larsen, JE Silva, MM Kaplan 1981 Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 2:87–102.

86. AC Bianco, JE Silva 1987 Nuclear 3,5,3′-triiodothyronine (T3) in brown adipose tissue: receptor occupancy and sources of T3 as determined by in vivo techniques. Endocrinology 120:55–62.

87. JE Silva, TE Dick, PR Larsen 1978 The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3′-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. Endocrinology 103:1196–1207.

88. JE Silva, PR Larsen 1978 Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear triiodothyronine receptors and the acute inhibition of thyroid- stimulating hormone release. J Clin Invest 61:1247–1259.

89. FR Crantz, JE Silva, PR Larsen 1982 Analysis of the sources and quantity of 3,5,3′-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110:367–375.

90. CH Gouveia, MA Christoffolete, CR Zaitune, JM Dora, JW Harney, AL Maia, AC Bianco 2005 Type 2 iodothyronine selenodeiodinase is expressed throughout the mouse skeleton and in the MC3T3-E1 mouse osteoblastic cell line during differentiation. Endocrinology 146:195–200.

91. D Salvatore, H Tu, JW Harney, PR Larsen 1996 Type 2 iodothyronine deiodinase is highly expressed in human thyroid. J Clin Invest 98:962–968.

92. M Dentice, A Marsili, R Ambrosio, O Guardiola, A Sibilio, JH Paik, G Minchiotti, RA DePinho, G Fenzi, PR Larsen, D Salvatore 2011 The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest 120:4021–4030.

93. C Curcio, MM Baqui, D Salvatore, BH Rihn, S Mohr, JW Harney, PR Larsen, AC Bianco 2001 The human type 2 iodothyronine deiodinase is a selenoprotein highly expressed in a mesothelioma cell line. J Biol Chem 276:30183–30187.

94. Y Hosoi, M Murakami, H Mizuma, T Ogiwara, M Imamura, M Mori 1999 Expression and regulation of type II iodothyronine deiodinase in cultured human skeletal muscle cells. J Clin Endocrinol Metab 84:3293–3300.

95. M Murakami, O Araki, T Morimura, Y Hosoi, H Mizuma, M Yamada, H Kurihara, S Ishiuchi, M Tamura, T Sasaki, M Mori 2000 Expression of type II iodothyronine deiodinase in brain tumors. J Clin Endocrinol Metab 85:4403–4406.

96. M Murakami, O Araki, Y Hosoi, Y Kamiya, T Morimura, T Ogiwara, H Mizuma, M Mori 2001 Expression and regulation of type II iodothyronine deiodinase in human thyroid gland. Endocrinology 142:2961–2967.

97. A Maeda, N Toyoda, S Yasuzawa-Amano, T Iwasaka, M Nishikawa 2003 Type 2 deiodinase expression is stimulated by growth factors in human vascular smooth muscle cells. Mol Cell Endocrinol 200:111–117.

98. SM Wajner, M dos Santos Wagner, RC Melo, GG Parreira, H Chiarini-Garcia, AC Bianco, C Fekete, E Sanchez, RM Lechan, AL Maia 2007 Type 2 iodothyronine deiodinase is highly expressed in germ cells of adult rat testis. J Endocrinol 194:47–54.

99. JJ DiStefano, TK Malone, M Jang 1982 Comprehensive kinetics of thyroxine distribution and metabolism in blood and tissue pools of the rat from only six blood samples: dominance of large, slowly exchanging tissue pools. Endocrinology 111:108–117.

100. TT Nguyen, F Chapa, DiStefano JJ 3rd 1998 Direct measurement of the contributions of type I and type II 5′-deiodinases to whole body steady state 3,5,3′-triiodothyronine production from thyroxine in the rat. Endocrinology 139:4626–4633.

101. JH Oppenheimer, HL Schwartz, MI Surks 1974 Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen, and testis. Endocrinology 95:897–903.

102. WE Visser, EC Friesema, J Jansen, TJ Visser 2007 Thyroid hormone transport by monocarboxylate transporters. Best Pract Res Clin Endocrinol Metab 21:223–236.

103. D Braun, EK Wirth, U Schweizer 2010 Thyroid hormone transporters in the brain. Rev Neurosci 21:173–186.

104. S Refetoff, AM Dumitrescu 2007 Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 21:277–305.

105. WE Visser, EC Friesema, TJ Visser 2011 Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 25:1–14.

106. H Heuer, TJ Visser 2009 Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology 150:1078–1083.

107. EC Friesema, A Grueters, H Biebermann, H Krude, A von Moers, M Reeser, TG Barrett, EE Mancilla, J Svensson, MH Kester, GG Kuiper, S Balkassmi, AG Uitterlinden, J Koehrle, P Rodien, AP Halestrap, TJ Visser 2004 Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364:1435–1437.

108. AM Dumitrescu, XH Liao, TB Best, K Brockmann, S Refetoff 2004 A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74:168–175.

109. EC Friesema, J Jansen, JW Jachtenberg, WE Visser, MH Kester, TJ Visser 2008 Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol 22:1357–1369.

110. DE Westholm, DR Salo, KJ Viken, JN Rumbley, GW Anderson 2009 The blood-brain barrier thyroxine transporter organic anion-transporting polypeptide 1c1 displays atypical transport kinetics. Endocrinology 150:5153–5162.

111. B Hagenbuch, C Gui 2008 Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801.

112. A Kinne, S Roth, H Biebermann, J Kohrle, A Gruters, U Schweizer 2009 Surface translocation and tri-iodothyronine uptake of mutant MCT8 proteins are cell type-dependent. J Mol Endocrinol 43:263–271.

113. DE Westholm, DD Stenehjem, JN Rumbley, LR Drewes, GW Anderson 2009 Competitive inhibition of organic anion transporting polypeptide 1c1-mediated thyroxine transport by the fenamate class of nonsteroidal antiinflammatory drugs. Endocrinology 150:1025–1032.

114. EC Friesema, GG Kuiper, J Jansen, TJ Visser, MH Kester 2006 Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol Endocrinol 20:2761–2772.

115. S Suzuki, J Mori, K Hashizume 2007 mu-Crystallin, a NADPH-dependent T(3)-binding protein in cytosol. Trends Endocrinol Metab 18:286–289.

116. WE Visser, WS Wong, AA van Mullem, EC Friesema, J Geyer, T.J. Visser Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol 315:138–145.

117. [Deleted.]

118. EC Friesema, S Ganguly, A Abdalla, JE Manning Fox, AP Halestrap, TJ Visser 2003 Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135.

119. D Sugiyama, H Kusuhara, Y Shitara, T Abe, Y Sugiyama 2002 Effect of 17 beta-estradiol-D-17 beta-glucuronide on the rat organic anion transporting polypeptide 2-mediated transport differs depending on substrates. Drug Metab Dispos 30:220–223.

120. TS Tracy 2003 Atypical enzyme kinetics: their effect on in vitro-in vivo pharmacokinetic predictions and drug interactions. Curr Drug Metab 4:341–346.

121. JM Hutzler, TS Tracy 2002 Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 30:355–362.

122. DE Westholm, JD Marold, KJ Viken, AH Duerst, GW Anderson, JN Rumbley 2010 Evidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members. Endocrinology 151:5941–5951.

123. A Regina, S Morchoisne, ND Borson, AL McCall, LR Drewes, F Roux 2001 Factor(s) released by glucose-deprived astrocytes enhance glucose transporter expression and activity in rat brain endothelial cells. Biochim Biophys Acta 1540:233–242.

124. D Braun, A Kinne, AU Brauer, R Sapin, MO Klein, J Kohrle, EK Wirth, U Schweizer 2011 Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia 59:463–471.

125. WE Visser, SM Swagemakers, Z Ozgur, R Schot, FW Verheijen, WF van Ijcken, PJ van der Spek, TJ Visser 2010 Transcriptional profiling of fibroblasts from patients with mutations in MCT8 and comparative analysis with the human brain transcriptome. Hum Mol Genet 19:4189–4200.

126. H Heuer, TJ Visser 2013 The pathophysiological consequences of thyroid hormone transporter deficiencies: insights from mouse models. Biochim Biophys Acta 1830:3974–3978.

127. B Morte, A Ceballos, D Diez, C Grijota-Martinez, AM Dumitrescu, C Di Cosmo, VA Galton, S Refetoff, J Bernal 2010 Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology 151:2381–2387.

128. QR Smith, DD Allen 2003 In situ brain perfusion technique. Methods Mol Med 89:209–218.

129. JH Oppenheimer, D Koerner, HL Schwartz, MI Surks 1972 Specific nuclear triiodothyronine binding sites in rat liver and kidney. J Clin Endocrinol Metab 35:330–333.

130. JL Leonard, TJ Visser 1986 Biochemistry of deiodination. In: G Hennemann (ed) Thyroid Hormone Metabolism. Marcel Dekker, New York, pp 189–229.

131. MM Kaplan 1986 Regulatory influences on iodothyronine deiodination in animal tissues In: G Hennemann (ed) Thyroid Hormone Metabolism. Marcel Dekker, New York, pp 231–253.

132. AC Bianco, D Salvatore, B Gereben, MJ Berry, PR Larsen 2002 Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89.

133. I Callebaut, C Curcio-Morelli, JP Mornon, B Gereben, C Buettner, S Huang, B Castro, TL Fonseca, JW Harney, PR Larsen, AC Bianco 2003 The iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase clan GH-A-like structure. J Biol Chem 278:36887–36896.

134. GD Sagar, B Gereben, I Callebaut, JP Mornon, A Zeöld, C Curcio-Morelli, JW Harney, C Luongo, MA Mulcahey, PR Larsen, SA Huang, AC Bianco 2008 The thyroid hormone-inactivating deiodinase functions as a homodimer. Mol Endocrinol 22:1382–1393.

135. C Curcio-Morelli, B Gereben, AM Zavacki, BW Kim, S Huang, JW Harney, PR Larsen, AC Bianco 2003 In vivo dimerization of types 1, 2, and 3 iodothyronine selenodeiodinases. Endocrinology 144:937–946.

136. JL Leonard, PR Larsen 1985 Thyroid hormone metabolism in primary cultures of fetal rat brain cells. Brain Res 327:1–13.

137. SM van der Heide, TJ Visser, ME Everts, PH Klaren 2002 Metabolism of thyroid hormones in cultured cardiac fibroblasts of neonatal rats. J Endocrinol 174:111–119.

138. EC Albright, FC Larson, RH Tust 1954 In vitro conversion of thyroxin to triiodothyronine by kidney slices. Proc Soc Exp Biol Med 86:137–140.

139. EC Albright, FC Larson 1959 Metabolism of L-thyroxine by human tissue slices. J Clin Invest 38:1899–1903.

140. TJ Visser, I Does-Tobe, R Docter, G Hennemann 1976 Subcellular localization of a rat liver enzyme converting thyroxine into tri-iodothyronine and possible involvement of essential thiol groups. Biochem J 157:479–482.

141. ARC Harris, SL Fang, L Hinerfeld, LE Braverman, AG Vagenakis 1979 The role of sulfhydryl groups on the impaired hepatic 3′,3,5-triiodothyronine generation from thyroxine in the hypothyroid, starved, fetal and neonatal rodent. J Clin Invest 63:516–524.

142. CH Verhoelst, SA Roelens, VM Darras 2005 Role of spatiotemporal expression of iodothyronine deiodinase proteins in cerebellar cell organization. Brain Res Bull 67:196–202.

143. SW Kim, JW Harney, PR Larsen 1998 Studies of the hormonal regulation of type 2 5′-iodothyronine deiodinase messenger ribonucleic acid in pituitary tumor cells using semiquantitative reverse transcription-polymerase chain reaction. Endocrinology 139:4895–4905.

144. J Sharifi, DL St Germain 1992 The cDNA for the type I iodothyronine 5′-deiodinase encodes an enzyme manifesting both high Km and low Km activity. Evidence that rat liver and kidney contain a single enzyme which converts thyroxine to 3,5,3′-triiodothyronine. J Biol Chem 267:12539–12544.

145. MJ Berry, AL Maia, JD Kieffer, JW Harney, PR Larsen 1992 Substitution of cysteine for selenocysteine in type I iodothyronine deiodinase reduces the catalytic efficiency of the protein but enhances its translation. Endocrinology 131:1848–1852.

146. GG Kuiper, W Klootwijk, TJ Visser 2002 Substitution of cysteine for a conserved alanine residue in the catalytic center of type II iodothyronine deiodinase alters interaction with reducing cofactor. Endocrinology 143:1190–1198.

147. J Kwakkel, O Chassande, HC van Beeren, E Fliers, WM Wiersinga, A Boelen 2010 Thyroid hormone receptor {alpha} modulates lipopolysaccharide-induced changes in peripheral thyroid hormone metabolism. Endocrinology 151:1959–1969.

148. JL Leonard, SA Mellen, PR Larsen 1983 Thyroxine 5′-deiodinase activity in brown adipose tissue. Endocrinology 112:1153–1155.

149. VA Galton, E Martinez, A Hernandez, EA St Germain, JM Bates, DL St Germain 2001 The type 2 iodothyronine deiodinase is expressed in the rat uterus and induced during pregnancy. Endocrinology 142:2123–2128.

150. VA Galton, A Hiebert 1987 Hepatic iodothyronine 5-deiodinase activity in Rana catesbeiana tadpoles at different stages of the life cycle. Endocrinology 121:42–47.

151. VA Galton, E Martinez, A Hernandez, EA St Germain, JM Bates, DL St Germain 1999 Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J Clin Invest 103:979–987.

152. GG Kuiper, W Klootwijk, TJ Visser 2003 Substitution of cysteine for selenocysteine in the catalytic center of type III iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference. Endocrinology 144:2505–2513.

153. NY Kalaany, KC Gauthier, AM Zavacki, PP Mammen, T Kitazume, JA Peterson, JD Horton, DJ Garry, AC Bianco, DJ Mangelsdorf 2005 LXRs regulate the balance between fat storage and oxidation. Cell Metab 1:231–244.

154. JM Koopdonk-Kool, JJ de Vijlder, GJ Veenboer, C Ris-Stalpers, JH Kok, T Vulsma, K Boer, TJ Visser 1996 Type II and type III deiodinase activity in human placenta as a function of gestational age. J Clin Endocrinol Metab 81:2154–2158.

155. MH Kester, MJ Toussaint, CA Punt, R Matondo, AM Aarnio, VM Darras, ME Everts, A de Bruin, TJ Visser 2009 Large induction of type III deiodinase expression after partial hepatectomy in the regenerating mouse and rat liver. Endocrinology 150:540–545.

156. K Richard, R Hume, E Kaptein, JP Sanders, H van Toor, WW De Herder, JC den Hollander, EP Krenning, TJ Visser 1998 Ontogeny of iodothyronine deiodinases in human liver. J Clin Endocrinol Metab 83:2868–2874.

157. I Kalló, P Mohácsik, B Vida, A Zeöld, Z Bardóczi, AM Zavacki, E Farkas, A Kádár, E Hrabovszky, R Arrojo E Drigo, L Dong, L Barna, M Palkovits, BA Borsay, L Herczeg, RM Lechan, AC Bianco, Z Liposits, C Fekete, B Gereben 2012 A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One 7:e37860.

158. N Toyoda, MJ Berry, JW Harney, PR Larsen 1995 Topological analysis of the integral membrane protein, type 1 iodothyronine deiodinase (D1). J Biol Chem 270:12310–12318.

159. J Steinsapir, AC Bianco, C Buettner, J Harney, PR Larsen 2000 Substrate-induced down-regulation of human type 2 deiodinase (hD2) is mediated through proteasomal degradation and requires interaction with the enzyme’s active center. Endocrinology 141:1127–1135.

160. [Deleted.]

161. W Croteau, JC Davey, VA Galton, DL St Germain 1996 Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 98:405–417.

162. B Gereben, C Goncalves, JW Harney, PR Larsen, AC Bianco 2000 Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol Endocrinol 14:1697–1708.

163. BW Kim, AM Zavacki, C Curcio-Morelli, M Dentice, JW Harney, PR Larsen, AC Bianco 2003 Endoplasmic reticulum-associated degradation of the human type 2 iodothyronine deiodinase (D2) is mediated via an association between mammalian UBC7 and the carboxyl region of D2. Mol Endocrinol 17:2603–2612.

164. GD Sagar, B Gereben, I Callebaut, JP Mornon, A Zeöld, WS da Silva, C Luongo, M Dentice, SM Tente, BC Freitas, JW Harney, AM Zavacki, AC Bianco 2007 Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol Cell Biol 27:4774–4783.

165. D Botero, B Gereben, C Goncalves, LA De Jesus, JW Harney, AC Bianco 2002 Ubc6p and ubc7p are required for normal and substrate-induced endoplasmic reticulum-associated degradation of the human selenoprotein type 2 iodothyronine monodeiodinase. Mol Endocrinol 16:1999–2007.

166. J Steinsapir, J Harney, PR Larsen 1998 Type 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes. J Clin Invest 102:1895–1899.

167. M Dentice, A Bandyopadhyay, B Gereben, I Callebaut, MA Christoffolete, BW Kim, S Nissim, JP Mornon, AM Zavacki, A Zeöld, LP Capelo, C Curcio-Morelli, R Ribeiro, JW Harney, CJ Tabin, AC Bianco 2005 The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7:698–705.

168. M Baqui, D Botero, B Gereben, C Curcio, JW Harney, D Salvatore, K Sorimachi, PR Larsen, AC Bianco 2003 Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278:1206–1211.

169. SA Huang, MA Mulcahey, A Crescenzi, M Chung, B Kim, CA Barnes, W Kuijt, HM Tu, JW Harney, PR Larsen 2005 TGF-B promotes inactivation of extracellular thyroid hormones via transcriptional stimulation of type 3 iodothyronine deiodinase. Mol Endocrinol 19:3126–3136.

170. HM Tu, SW Kim, D Salvatore, T Bartha, G Legradi, PR Larsen, RM Lechan 1997 Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138:3359–3368.

171. HM Tu, G Legradi, T Bartha, D Salvatore, RM Lechan, PR Larsen 1999 Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology 140:784–790.

172. A Guadano-Ferraz, MJ Obregon, DL St Germain, J Bernal 1997 The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci USA 94:10391–10396.

173. BC Freitas, B Gereben, M Castillo, I Kallo, A Zeold, P Egri, Z Liposits, AM Zavacki, RM Maciel, S Jo, P Singru, E Sanchez, RM Lechan, AC Bianco 2010 Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 120:2206–2217.

174. F Adlkofer, DB Ramsden, MC Wusteman, DE Pegg, R Hoffenberg 1977 Metabolism of thyroid hormones by the isolated perfused rabbit kidney. Horm Metab Res 9:400–403.

175. DC Ferguson, AS Jennings 1983 Regulation of conversion of thyroxine to triiodothyronine in perfused rat kidney. Am J Physiol 245:E220–E229.

176. DC Ferguson, H Hoenig, AS Jennings 1985 Triiodothyronine production by the perfused rat kidney is reduced by diabetes mellitus but not by fasting. Endocrinology 117:64–70.

177. AS Jennings, DC Ferguson, RD Utiger 1979 Regulation of the conversion of thyroxine to triiodothyronine in the perfused rat liver. J Clin Invest 64:1614–1623.

178. AS Jennings, FL Crutchfield, MB Dratman 1984 Effect of hypothyroidism and hyperthyroidism on triiodothyronine production in perfused rat liver. Endocrinology 114:992–997.

179. JT Hidal, MM Kaplan 1985 Characteristics of thyroxine 5′-deiodination in cultured human placental cells: regulation by iodothyronines. J Clin Invest 76:947–955.

180. E Roti, LE Braverman, SL Fang, S Alex, CH Emerson 1982 Ontogenesis of placental inner ring thyroxine deiodinase and amniotic fluid 3,3′,5′-triiodothyronine concentration in the rat. Endocrinology 111:959–963.

181. E Roti, SL Fang, LE Braverman, CH Emerson 1982 Rat placenta is an active site of inner ring deiodination of thyroxine and 3,3′,5-triiodothyronine. Endocrinology 110:34–37.

182. JP Schroder-van der Elst, D van der Heide, G Morreale de Escobar, MJ Obregon 1998 Iodothyronine deiodinase activities in fetal rat tissues at several levels of iodine deficiency: a role for the skin in 3,5,3′-triiodothyronine economy? Endocrinology 139:2229–2234.

183. MI Castro, LE Braverman, S Alex, CF Wu, CH Emerson 1985 Inner-ring deiodination of 3,5,3′-triiodothyronine in the in situ perfused guinea pig placenta. J Clin Invest 76:1921–1926.

184. E Cooper, M Gibbens, CR Thomas, C Lowy, CW Burke 1983 Conversion of thyroxine to 3,3′,5′-triiodothyronine in the guinea pig placenta: in vivo studies. Endocrinology 112:1808–1815.

185. MM Kaplan, EA Shaw 1984 Type II iodothyronine 5′-deiodination by human and rat placenta in vitro. J Clin Endocrinol Metab 59:253–257.

186. MJ Schneider, SN Fiering, B Thai, SY Wu, E St Germain, AF Parlow, DL St Germain, VA Galton 2006 Targeted disruption of the type 1 selenodeiodinase gene (dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147:580–589.

187. VA Galton, ET Wood, EA St Germain, CA Withrow, G Aldrich, GM St Germain, AS Clark, DL St Germain 2007 Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148:3080–3088.

188. TJ Visser 1996 Pathways of thyroid hormone metabolism. Acta Medica Austriaca 23:10–16.

189. PG Curran, LJ DeGroot 1991 The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr Rev 12:135–150.

190. RP Peeters, MH Kester, PJ Wouters, E Kaptein, H van Toor, TJ Visser, G Van den Berghe 2005 Increased thyroxine sulfate levels in critically ill patients as a result of a decreased hepatic type I deiodinase activity. J Clin Endocrinol Metab 90:6460–6465.

191. PI Mackenzie, KW Bock, B Burchell, C Guillemette, S Ikushiro, T Iyanagi, JO Miners, IS Owens, DW Nebert 2005 Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15:677–685.

192. SY Wu, WL Green, WS Huang, MT Hays, IJ Chopra 2005 Alternate pathways of thyroid hormone metabolism. Thyroid 15:943–958.

193. EL Stanley, R Hume, MW Coughtrie 2005 Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol Cell Endocrinol 240:32–42.

194. MH Kester, E Kaptein, TJ Roest, CH van Dijk, D Tibboel, W Meinl, H Glatt, MW Coughtrie, TJ Visser 1999 Characterization of human iodothyronine sulfotransferases. J Clin Endocrinol Metab 84:1357–1364.

195. CA Pietsch, TS Scanlan, RJ Anderson 2007 Thyronamines are substrates for human liver sulfotransferases. Endocrinology 148:1921–1927.

196. E Kaptein, GA van Haasteren, E Linkels, WJ de Greef, TJ Visser 1997 Characterization of iodothyronine sulfotransferase activity in rat liver. Endocrinology 138:5136–5143.

197. Y Kato, S Ikushiro, Y Emi, S Tamaki, H Suzuki, T Sakaki, S Yamada, M Degawa 2008 Hepatic UDP-glucuronosyltransferases responsible for glucuronidation of thyroxine in humans. Drug Metab Dispos 36:51–55.

198. M Moreno, E Kaptein, F Goglia, TJ Visser 1994 Rapid glucuronidation of tri- and tetraiodothyroacetic acid to ester glucuronides in human liver and to ether glucuronides in rat liver. Endocrinology 135:1004–1009.

199. TJ Visser, E Kaptein, H van Toor, JA van Raaij, KJ van den Berg, CT Joe, JG van Engelen, A Brouwer 1993 Glucuronidation of thyroid hormone in rat liver: effects of in vivo treatment with microsomal enzyme inducers and in vitro assay conditions. Endocrinology 133:2177–2186.

200. RD Frumess, PR Larsen 1975 Correlation of serum triiodothyronine (T3) and thyroxine (T4) with biologic effects of thyroid hormone replacement in propylthiouracil- treated rats. Metabolism 24:547–554.

201. F Hervas, G Morreale de Escobar, F Escobar Del Rey 1975 Rapid effects of single small doses of L-thyroxine and triiodo-L-thyronine on growth hormone, as studied in the rat by radioimmunoassy. Endocrinology 97:91–101.

202. PR Larsen, RD Frumess 1977 Comparison of the biological effects of thyroxine and triiodothyronine in the rat. Endocrinology 100:980–988.

203. OH Clark, WR Lambert, RR Cavalieri, B Rapoport, ME Hammond, SH Ingbar 1976 Compensatory thyroid hypertrophy after hemithyroidectomy in rats. Endocrinology 99:988–995.

204. SK Saha, H Ohinata, T Ohno, A Kuroshima 1998 Thermogenesis and fatty acid composition of brown adipose tissue in rats rendered hyperthyroid and hypothyroid—with special reference to docosahexaenoic acid. Jpn J Physiol 48:355–364.

205. DJ Branvold, DR Allred, DJ Beckstead, HJ Kim, N Fillmore, BM Condon, JD Brown, SN Sudweeks, DM Thomson, WW Winder 2008 Thyroid hormone effects on LKB1, MO25, phospho-AMPK, phospho-CREB, and PGC-1alpha in rat muscle. J Appl Physiol 105:1218–1227.

206. JD Boughter Jr, S Raghow, TM Nelson, SD Munger 2005 Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli. BMC Genet 6:36.

207. H Chatoui, O El Hiba, A Elgot, H Gamrani 2012 The rat SCO responsiveness to prolonged water deprivation: implication of Reissner’s fiber and serotonin system. C R Biol 335:253–260.

208. C Cawthorne, R Swindell, IJ Stratford, C Dive, A Welman 2007 Comparison of doxycycline delivery methods for Tet-inducible gene expression in a subcutaneous xenograft model. J Biomol Tech 18:120–123.

209. JMM Rondeel, WJ De Greef, W Klootwijk, TJ Visser 1992 Effects of hypothyroidism on hypothalamic release of thyrotropin-releasing hormone in rats. Endocrinology 130:651–656.

210. SJ Solis, P Villalobos, A Orozco, G Delgado, A Quintanar-Stephano, P Garcia-Solis, HL Hernandez-Montiel, L Robles-Osorio, RC Valverde 2010 Inhibition of intrathyroidal dehalogenation by iodide. J Endocrinol 208:89–96.

211. CB Ueta, EL Olivares, AC Bianco 2011 Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity. Endocrinology 152:3571–3581.

212. M Perello, T Friedman, V Paez-Espinosa, X Shen, RC Stuart, EA Nillni 2006 Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology 147:2705–2716.

213. RC Goldberg, IL Chaikoff, S Lindsay, DD Feller 1950 Histopathological changes induced in the normal thyroid and other tissues of the rat by internal radiation with various doses of radioactive iodine. Endocrinology 46:72–90.

214. DD Feller, IL Chaikoff, A Taurog, HB Jones 1949 The changes induced in iodine metabolism of the rat by internal radiation of its thyroid with I131. Endocrinology 45:464–479.

215. RC Goldberg, IL Chaikoff 1949 A simplified procedure for thyroidectomy of the newborn rat without concomitant parathyroidectomy. Endocrinology 45:64–70.

216. Y Kasuga, S Matsubayashi, Y Sakatsume, F Akasu, C Jamieson, R Volpe 1991 The effect of xenotransplantation of human thyroid tissue following radioactive iodine-induced thyroid ablation on thyroid function in the nude mouse. Clin Invest Med 14:277–281.

217. H Seo, C Wunderlich, G Vassart, S Refetoff 1981 Growth hormone responses to thyroid hormone in the neonatal rat: resistance and anamnestic response. J Clin Invest 67:569–574.

218. PE Smith 1930 Hypophysectomy and a replacement therapy in the rat. Am J Anatomy 45:205–273.

219. S Renaud, G Picard 1964 An improved table for hypophysectomy in rat. Can J Physiol Pharmacol 42:870–872.

220. G Falconi, GL Rossi 1964 Method for placing a pituitary graft into the evacuated pituitary capsule of the hypophysectomized rat or mouse. Endocrinology 75:964–967.

221. M Sato, S Yoneda 1966 An efficient method for transauricular hypophysectomy in rats. Acta Endocrinol (Copenh) 51:43–48.

222. GS Leung, M Kawai, JK Tai, J Chen, SM Bandiera, TK Chang 2009 Developmental expression and endocrine regulation of CYP1B1 in rat testis. Drug Metab Dispos 37:523–528.

223. S Kimura, Y Hara, T Pineau, P Fernandez-Salguero, CH Fox, JM Ward, FJ Gonzalez 1996 The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69.

224. A Mansouri, K Chowdhury, P Gruss 1998 Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90.

225. PM Adams, SA Stein, M Palnitkar, A Anthony, L Gerrity, DR Shanklin 1989 Evaluation and characterization of the hypothyroid hyt/hyt mouse. I: Somatic and behavioral studies. Neuroendocrinology 49:138–143.

226. SA Stein, DR Shanklin, L Krulich, MG Roth, CM Chubb, PM Adams 1989 Evaluation and characterization of the hyt/hyt hypothyroid mouse. II. Abnormalities of TSH and the thyroid gland. Neuroendocrinology 49:509–519.

227. RC Marians, L Ng, HC Blair, P Unger, PN Graves, TF Davies 2002 Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc Natl Acad Sci USA 99:15776–15781.

228. KR Johnson, CC Marden, P Ward-Bailey, LH Gagnon, RT Bronson, LR Donahue 2007 Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol 21:1593–1602.

229. [Deleted.]

230. WG Beamer, LJ Maltais, MH DeBaets, EM Eicher 1987 Inherited congenital goiter in mice. Endocrinology 120:838–840.

231. BA Taylor, L Rowe 1987 The congenital goiter mutation is linked to the thyroglobulin gene in the mouse. Proc Natl Acad Sci USA 84:1986–1990.

232. M Castillo, JA Hall, M Correa-Medina, C Ueta, HW Kang, DE Cohen, AC Bianco 2011 Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60:1082–1089.

233. M Watanabe, SM Houten, C Mataki, MA Christoffolete, BW Kim, H Sato, N Messaddeq, JW Harney, O Ezaki, T Kodama, K Schoonjans, AC Bianco, J Auwerx 2006 Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489.

234. LA de Jesus, SD Carvalho, MO Ribeiro, M Schneider, SW Kim, JW Harney, PR Larsen, AC Bianco 2001 The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 108:1379–1385.

235. ML Rosene, G Wittmann, R Arrojo e Drigo, PS Singru, RM Lechan, AC Bianco 2010 Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151:5961–5970.

236. RJ Reiter, S Klaus, C Ebbinghaus, G Heldmaier, U Redlin, D Ricquier, MK Vaughan, S Steinlechner 1990 Inhibition of 5′-deiodination of thyroxine suppresses the cold-induced increase in brown adipose tissue messenger ribonucleic acid for mitochondrial uncoupling protein without influencing lipoprotein lipase activity. Endocrinology 126:2550–2554.

237. AC Bianco, SD Carvalho, CR Carvalho, R Rabelo, AS Moriscot 1998 Thyroxine 5′-deiodination mediates norepinephrine-induced lipogenesis in dispersed brown adipocytes. Endocrinology 139:571–578.

238. CJ Pol, A Muller, MJ Zuidwijk, ED van Deel, E Kaptein, A Saba, M Marchini, R Zucchi, TJ Visser, WJ Paulus, DJ Duncker, WS Simonides 2011 Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152:669–679.

239. MC Medina, J Molina, Y Gadea, A Fachado, M Murillo, G Simovic, A Pileggi, A Hernández, H Edlund, AC Bianco 2011 The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human beta-cells and its targeted inactivation impairs insulin secretion. Endocrinology 152:3717–3727.

240. [Deleted.]

241. EL Olivares, MP Marassi, RS Fortunato, AC da Silva, RH Costa-e-Sousa, IG Araújo, EC Mattos, MO Masuda, MA Mulcahey, SA Huang, AC Bianco, DP Carvalho 2007 Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148:4786–4792.

242. GM Abrams, PR Larsen 1973 Triiodothyronine and thyroxine in the serum and thyroid glands of iodine-deficient rats. J Clin Invest 52:2522–2531.

243. HF Escobar-Morreale, MJ Obregon, F Escobar del Rey, G Morreale de Escobar 1995 Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest 96:2828–2838.

244. HF Escobar-Morreale, F Escobar del Rey, MJ Obregon, G Morreale de Escobar 1996 Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 137:2490–2502.

245. RD Frumess, PR Larsen 1975 The effect of inhibiting triiodothyronine (T3) production from thyroxine (T4) by propylthiouracil (PTU) on the physiological activity of T4 in thyroidectomized rats. In: WA Harland, JS Orr (eds) Thyroid Hormone Metabolism. Academic Press, Waltham, MA, pp 125–137.

246. PR Larsen, RD Frumess 1976 Comparison of the effects of triiodothyronine (T3) and thyroxine (T4) on serum TSH and hepatic mitochondrial glycerophosphate dehydrogenase (alpha-GPD) activities in thyroidectomized hypothyroid rats. In: J Robbins, LE Braverman (eds) Thyroid Research: Proceedings of the Seventh International Thyroid Conference, Boston, Massachusetts, June 9–13, 1975. Excerpta Medica, Amsterdam, pp 21–24.

247. MS Deol 1973 An experimental approach to the understanding and treatment of hereditary syndromes with congenital deafness and hypothyroidism. J Med Genet 10:235–242.

248. R Hébert, JM Langlois, JH Dussault 1985 Permanent defects in rat peripheral auditory function following perinatal hypothyroidism: determination of a critical period. Brain Res 23:161–170.

249. PM Sprenkle, J McGee, JM Bertoni, EJ Walsh 2001 Prevention of auditory dysfunction in hypothyroid Tshr mutant mice by thyroxin treatment during development. J Assoc Res Otolaryngol 2:348–361.

250. PM Sprenkle, J McGee, JM Bertoni, EJ Walsh 2001 Development of auditory brainstem responses (ABRs) in Tshr mutant mice derived from euthyroid and hypothyroid dams. J Assoc Res Otolaryngol 2:330–347.

251. PM Sprenkle, J McGee, JM Bertoni, EJ Walsh 2001 Consequences of hypothyroidism on auditory system function in Tshr mutant (hyt) mice. J Assoc Res Otolaryngol 2:312–329.

252. F Antonica, DF Kasprzyk, R Opitz, M Iacovino, XH Liao, AM Dumitrescu, S Refetoff, K Peremans, M Manto, M Kyba, S Costagliola 2012 Generation of functional thyroid from embryonic stem cells. Nature 491:66–71.

253. R Ma, R Latif, TF Davies 2013 Thyroid follicle formation and thyroglobulin expression in multipotent endodermal stem cells. Thyroid 23:385–391.

254. LC Moeller, C Wardrip, M Niekrasz, S Refetoff, RE Weiss 2009 Comparison of thyroidectomized calf serum and stripped serum for the study of thyroid hormone action in human skin fibroblasts in vitro. Thyroid 19:639–644.

255. HH Samuels, F Stanley, J Casanova 1979 Depletion of L-3,5,3′-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology 105:80–85.

256. AN Hollenberg, T Monden, JP Madura, K Lee, FE Wondisford 1996 Function of nuclear co-repressor protein on thyroid hormone response elements is regulated by the receptor A/B domain. J Biol Chem 271:28516–28520.

257. Z Cao, C West, CS Norton-Wenzel, R Rej, FB Davis, PJ Davis 2009 Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endocr Res 34:101–108.

258. A Muller, MJ Zuidwijk, C van Hardeveld 1993 Effects of thyroid hormone on growth and differentiation of L6 muscle cells. BAM 3:59–68.

259. MA Christoffolete, R Ribeiro, P Singru, C Fekete, WS da Silva, DF Gordon, SA Huang, A Crescenzi, JW Harney, EC Ridgway, PR Larsen, RM Lechan, AC Bianco 2006 Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology 147:1735–1743.

260. V Shah, P Nguyen, NH Nguyen, M Togashi, TS Scanlan, JD Baxter, P Webb 2008 Complex actions of thyroid hormone receptor antagonist NH-3 on gene promoters in different cell lines. Mol Cell Endocrinol 296:69–77.

261. GJ Grover, C Dunn, NH Nguyen, J Boulet, G Dong, J Domogauer, P Barbounis, TS Scanlan 2007 Pharmacological profile of the thyroid hormone receptor antagonist NH3 in rats. J Pharmacol Exp Ther 322:385–390.

262. NH Nguyen, JW Apriletti, ST Cunha Lima, P Webb, JD Baxter, TS Scanlan 2002 Rational design and synthesis of a novel thyroid hormone antagonist that blocks coactivator recruitment. J Med Chem 45:3310–3320.

263. W Lim, NH Nguyen, HY Yang, TS Scanlan, JD Furlow 2002 A thyroid hormone antagonist that inhibits thyroid hormone action in vivo. J Biol Chem 277:35664–35670.

264. JD Baxter, P Goede, JW Apriletti, BL West, W Feng, K Mellstrom, RJ Fletterick, RL Wagner, PJ Kushner, RC Ribeiro, P Webb, TS Scanlan, S Nilsson 2002 Structure-based design and synthesis of a thyroid hormone receptor (TR) antagonist. Endocrinology 143:517–524.

265. HA Yoshihara, JW Apriletti, JD Baxter, TS Scanlan 2001 A designed antagonist of the thyroid hormone receptor. Bioorg Med Chem Lett 11:2821–2825.

266. S Seelig, DB Jump, HC Towle, C Liaw, CN Mariash, HL Schwartz, JH Oppenheimer 1982 Paradoxical effects of cycloheximide on the ultra-rapid induction of two hepatic mRNA sequences by triiodothyronine (T3). Endocrinology 110:671–673.

267. AC Bianco, JE Silva 1987 Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J Clin Invest 79:295–300.

268. AC Bianco, JE Silva 1987 Optimal response of key enzymes and uncoupling protein to cold in BAT depends on local T3 generation. Am J Physiol 253:E255–E263.

269. AC Bianco, XY Sheng, JE Silva 1988 Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. J Biol Chem 263:18168–18175.

270. [Deleted.]

271. SD Carvalho, ET Kimura, AC Bianco, JE Silva 1991 Central role of brown adipose tissue thyroxine 5′-deiodinase on thyroid hormone-dependent thermogenic response to cold. Endocrinology 128:2149–2159.

272. [Deleted.]

273. SD Carvalho-Bianco, BW Kim, JX Zhang, JW Harney, RS Ribeiro, B Gereben, AC Bianco, U Mende, PR Larsen 2004 Chronic cardiac-specific thyrotoxicosis increases myocardial beta-adrenergic responsiveness. Mol Endocrinol 18:1840–1849.

274. MG Trivieri, GY Oudit, R Sah, BG Kerfant, H Sun, AO Gramolini, Y Pan, AD Wickenden, W Croteau, G Morreale de Escobar, R Pekhletski, D St Germain, DH Maclennan, PH Backx 2006 Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 103:6043–6048.

275. A Hernandez, ME Martinez, S Fiering, VA Galton, D St Germain 2006 Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484.

276. A Hernandez, ME Martinez, XH Liao, J Van Sande, S Refetoff, VA Galton, DL St Germain 2007 Type 3 deiodinase deficiency results in functional abnormalities at multiple levels of the thyroid axis. Endocrinology 148:5680–5687.

277. L Ng, A Hernandez, W He, T Ren, M Srinivas, M Ma, VA Galton, DL St Germain, D Forrest 2009 A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150:1952–1960.

278. A Hernandez, L Quignodon, ME Martinez, F Flamant, DL St Germain 2010 Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology 151:5550–5558.

279. L Ng, A Lyubarsky, SS Nikonov, M Ma, M Srinivas, B Kefas, DL St Germain, A Hernandez, EN Pugh Jr, D Forrest 2010 Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J Neurosci 30:3347–3357.

280. [Deleted.]

281. Y Murata, P Ceccarelli, S Refetoff, AL Horwitz, N Matsui 1987 Thyroid hormone inhibits fibronectin synthesis by cultured human skin fibroblasts. J Clin Endocrinol Metab 64:334–339.

282. M Miura, K Tanaka, Y Komatsu, M Suda, A Yasoda, Y Sakuma, A Ozasa, K Nakao 2002 Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate. J Bone Miner Res 17:443–454.

283. MA Al-Jubouri, GD Inkster, PA Nee, FJ Andrews 2006 Thyrotoxicosis presenting as hypokalaemic paralysis and hyperlactataemia in an oriental man. Ann Clin Biochem 43:323–325.

284. J Ho, R Jackson, D Johnson 2011 Massive levothyroxine ingestion in a pediatric patient: case report and discussion. CJEM 13:165–168.

285. GA Brent 2000 Tissue-specific actions of thyroid hormone: insights from animal models. Rev Endocr Metab Disord 1:27–33.

286. D Forrest, B Vennstrom 2000 Functions of thyroid hormone receptors in mice. Thyroid 10:41–52.

287. GD Pennock, TE Raya, JJ Bahl, S Goldman, E Morkin 1992 Cardiac effects of 3,5-diiodothyropropionic acid, a thyroid hormone analog with inotropic selectivity. J Pharmacol Exp Ther 263:163–169.

288. KW Mahaffey, TE Raya, GD Pennock, E Morkin, S Goldman 1995 Left ventricular performance and remodeling in rabbits after myocardial infarction. Effects of a thyroid hormone analogue. Circulation 91:794–801.

289. GD Pennock, TE Raya, JJ Bahl, S Goldman, E Morkin 1993 Combination treatment with captopril and the thyroid hormone analogue 3,5-diiodothyropropionic acid. A new approach to improving left ventricular performance in heart failure. Circulation 88:1289–1298.

290. AA Abohashem-Aly, X Meng, J Li, MR Sadaria, L Ao, J Wennergren, DA Fullerton, CD Raeburn 2011 DITPA, a thyroid hormone analog, reduces infarct size and attenuates the inflammatory response following myocardial ischemia. J Surg Res 171:379–385.

291. RJ Tomanek, MB Zimmerman, PR Suvarna, E Morkin, GD Pennock, S Goldman 1998 A thyroid hormone analog stimulates angiogenesis in the post-infarcted rat heart. J Mol Cell Cardiol 30:923–932.

292. PW Ladenson, M McCarren, E Morkin, RG Edson, MC Shih, SR Warren, JG Barnhill, L Churby, H Thai, T O’Brien, I Anand, A Warner, B Hattler, M Dunlap, J Erikson, S Goldman 2010 Effects of the thyromimetic agent diiodothyropropionic acid on body weight, body mass index, and serum lipoproteins: a pilot prospective, randomized, controlled study. J Clin Endocrinol Metab 95:1349–1354.

293. S Goldman, M McCarren, E Morkin, PW Ladenson, R Edson, S Warren, J Ohm, H Thai, L Churby, J Barnhill, T O’Brien, I Anand, A Warner, B Hattler, M Dunlap, J Erikson, MC Shih, P Lavori 2009 DITPA (3,5-diiodothyropropionic acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 119:3093–3100.

294. NR Hadi, FG Al-amran, AA Hussein 2011 Effects of thyroid hormone analogue and a leukotrienes pathway-blocker on renal ischemia/reperfusion injury in mice. BMC Nephrol 12:70.

295. MA Talukder, F Yang, Y Nishijima, CA Chen, L Xie, SD Mahamud, A Kalyanasundaram, JD Bonagura, M Periasamy, JL Zweier 2011 Detrimental effects of thyroid hormone analog DITPA in the mouse heart: increased mortality with in vivo acute myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol 300:H702–H711.

296. RL Wagner, BR Huber, AK Shiau, A Kelly, ST Cunha Lima, TS Scanlan, JW Apriletti, JD Baxter, BL West, RJ Fletterick 2001 Hormone selectivity in thyroid hormone receptors. Mol Endocrinol 15:398–410.

297. PA Schueler, HL Schwartz, KA Strait, CN Mariash, JH Oppenheimer 1990 Binding of 3,5,3′-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: differences in the affinity of the α- and β-forms for the acetic acid analog and failure of the human testis and kidney α-2 products to bind T3. Mol Endocrinol 4:227–234.

298. L Martinez, AS Nascimento, FM Nunes, K Phillips, R Aparicio, SM Dias, AC Figueira, JH Lin, P Nguyen, JW Apriletti, FA Neves, JD Baxter, P Webb, MS Skaf, I Polikarpov 2009 Gaining ligand selectivity in thyroid hormone receptors via entropy. Proc Natl Acad Sci USA 106:20717–20722.

299. J Massol, P Martin, P Soubrie, P Simon 1987 Triiodothyroacetic acid-induced reversal of learned helplessness in rats. Eur J Pharmacol 134:345–348.

300. G Medina-Gomez, A Hernandez, RM Calvo, E Martin, MJ Obregon 2003 Potent thermogenic action of triiodothyroacetic acid in brown adipocytes. Cell Mol Life Sci 60:1957–1967.

301. G Medina-Gomez, RM Calvo, MJ Obregon 2008 Thermogenic effect of triiodothyroacetic acid at low doses in rat adipose tissue without adverse side effects in the thyroid axis. Am J Physiol Endocrinol Metab 294:E688–697.

302. H Liang, CE Juge-Aubry, M O’Connell, AG Burger 1997 Organ-specific effects of 3,5,3′-triiodothyroacetic acid in rats. Eur J Endocrinol 137:537–544.

303. PI Salmela, L Wide, H Juustila, A Ruokonen 1988 Effects of thyroid hormones (T4, T3), bromocriptine and Triac on inappropriate TSH hypersecretion. Clin Endocrinol (Oxf) 28:497–507.

304. P Beck-Peccoz, A Sartorio, C De Medici, G Grugni, F Morabito, G Faglia 1988 Dissociated thyromimetic effects of 3, 5,3′-triiodothyroacetic acid (TRIAC) at the pituitary and peripheral tissue levels. J Endocrinol Invest 11:113–118.

305. HW Mueller-Gaertner, C Schneider 1988 3,5,3′-Triiodothyroacetic acid minimizes the pituitary thyrotrophin secretion in patients on levo-thyroxine therapy after ablative therapy for differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 28:345–351.

306. SI Sherman, PW Ladenson 1992 Organ-specific effects of tiratricol: a thyroid hormone analog with hepatic, not pituitary, superagonist effects. J Clin Endocrinol Metab 75:901–905.

307. SI Sherman, MD Ringel, MJ Smith, HA Kopelen, WA Zoghbi, PW Ladenson 1997 Augmented hepatic and skeletal thyromimetic effects of tiratricol in comparison with levothyroxine. J Clin Endocrinol Metab 82:2153–2158.

308. G Chiellini, JW Apriletti, H al Yoshihara, JD Baxter, RC Ribeiro, TS Scanlan 1998 A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol 5:299–306.

309. RC Ribeiro, JW Apriletti, RL Wagner, W Feng, PJ Kushner, S Nilsson, TS Scanlan, BL West, RJ Fletterick, JD Baxter 1998 X-ray crystallographic and functional studies of thyroid hormone receptor. J Steroid Biochem Mol Biol 65:133–141.

310. SU Trost, E Swanson, B Gloss, DB Wang-Iverson, H Zhang, T Volodarsky, GJ Grover, JD Baxter, G Chiellini, TS Scanlan, WH Dillmann 2000 The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141:3057–3064.

311. MO Ribeiro, SD Carvalho, JJ Schultz, G Chiellini, TS Scanlan, AC Bianco, GA Brent 2001 Thyroid hormone–sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform–specific. J Clin Invest 108:97–105.

312. FRS Freitas, T Zorn, C Labatte, TS Scanlan, GA Brent, AS Moriscot, AC Bianco, CHA Gouveia 2002 Effects of the thyroid hormone receptor beta (TRb)-selective compound GC-1 on bone development of Wistar rats. In: 74th Annual Meeting of the American Thyroid Association. American Thyroid Association, Los Angeles, CA.

313. FR Freitas, AS Moriscot, V Jorgetti, AG Soares, M Passarelli, TS Scanlan, GA Brent, AC Bianco, CH Gouveia 2003 Spared bone mass in rats treated with thyroid hormone receptor TR beta-selective compound GC-1. Am J Physiol Endocrinol Metab 285:E1135–E1141.

314. J Manzano, B Morte, TS Scanlan, J Bernal 2003 Differential effects of triiodothyronine and the thyroid hormone receptor beta-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 144:5480–5487.

315. GJ Grover, DM Egan, PG Sleph, BC Beehler, G Chiellini, NH Nguyen, JD Baxter, TS Scanlan 2004 Effects of the thyroid hormone receptor agonist GC-1 on metabolic rate and cholesterol in rats and primates: selective actions relative to 3,5,3′-triiodo-L-thyronine. Endocrinology 145:1656–1661.

316. R Martinez de Mena, TS Scanlan, MJ Obregon 2010 The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology 151:5074–5083.

317. G Bryzgalova, S Effendic, A Khan, S Rehnmark, P Barbounis, J Boulet, G Dong, R Singh, S Shapses, J Malm, P Webb, JD Baxter, GJ Grover 2008 Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor beta subtype selective agonist KB-141. J Steroid Biochem Mol Biol 111:262–267.

318. GJ Grover, K Mellström, J Malm 2007 Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes. Curr Vasc Pharmacol 5:141–154.

319. MD Erion, EE Cable, BR Ito, H Jiang, JM Fujitaki, PD Finn, BH Zhang, J Hou, SH Boyer, PD van Poelje, DL Linemeyer 2007 Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci USA 104:15490–15495.

320. GJ Grover, K Mellstrom, L Ye, J Malm, YL Li, LG Bladh, PG Sleph, MA Smith, R George, B Vennström, K Mookhtiar, R Horvath, J Speelman, D Egan, JD Baxter 2003 Selective thyroid hormone receptor-beta activation: a strategy for reduction of weight, cholesterol, and lipoprotein (a) with reduced cardiovascular liability. Proc Natl Acad Sci USA 100:10067–10072.

321. A Berkenstam, J Kristensen, K Mellström, B Carlsson, J Malm, S Rehnmark, N Garg, CM Andersson, M Rudling, F Sjöberg, B Angelin, JD Baxter 2008 The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci USA 105:663–667.

322. PW Ladenson, JD Kristensen, EC Ridgway, AG Olsson, B Carlsson, I Klein, JD Baxter, B Angelin 2010 Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N Engl J Med 362:906–916.

323. AB Karo Bio 2012 Karo Bio terminates the eprotirome program. Available online at: www.karobio.com/investormedia/pressreleaser/pressrelease?pid=639535 (accessed October 15, 2013).

324. H Shiohara, T Nakamura, N Kikuchi, T Ozawa, R Nagano, A Matsuzawa, H Ohnota, T Miyamoto, K Ichikawa, K Hashizume 2012 Discovery of novel indane derivatives as liver-selective thyroid hormone receptor beta (TRbeta) agonists for the treatment of dyslipidemia. Bioorg Med Chem 20:3622–3634.

325. BR Ito, BH Zhang, EE Cable, X Song, JM Fujitaki, DA MacKenna, CE Wilker, B Chi, PD van Poelje, DL Linemeyer, MD Erion 2009 Thyroid hormone beta receptor activation has additive cholesterol lowering activity in combination with atorvastatin in rabbits, dogs and monkeys. Br J Pharmacol 156:454–465.

326. EE Cable, PD Finn, JW Stebbins, J Hou, BR Ito, PD van Poelje, DL Linemeyer, MD Erion 2009 Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 49:407–417.

327. CA Ocasio, TS Scanlan 2006 Design and characterization of a thyroid hormone receptor alpha (TRalpha)-specific agonist. ACS Chem Biol 1:585–593.

328. RJ Denver, F Hu, TS Scanlan, JD Furlow 2009 Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis. Dev Biol 326:155–168.

329. C Grijota-Martinez, E Samarut, TS Scanlan, B Morte, J Bernal 2011 In vivo activity of the thyroid hormone receptor beta- and alpha-selective agonists GC-24 and CO23 on rat liver, heart, and brain. Endocrinology 152:1136–1142.

330. G Morreale de Escobar, MJ Obregón, F Escobar del Rey 2007 Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr 10:1554–1570.

331. JP Schroder-van der Elst, D van der Heide, J Kastelijn, B Rousset, MJ Obregon 2001 The expression of the sodium/iodide symporter is up-regulated in the thyroid of fetuses of iodine-deficient rats. Endocrinology 142:3736–3741.

332. G Riesco, A Taurog, PR Larsen 1976 Variations in the response of the thyroid gland of the rat to different low-iodine diets: correlation with iodine content of diet. Endocrinology 99:270–280.

333. G Riesco, A Taurog, PR Larsen, L Krülich 1977 Acute and chronic responses to iodine deficiency in rats. Endocrinology 100:303–313.

334. CC Pazos-Moura, EG Moura, MM Dorris, S Rehnmark, L Melendez, JE Silva, A Taurog 1991 Effect of iodine deficiency and cold exposure on thyroxine 5′-deiodinase activity in various rat tissues. Am J Physiol 260:E175–E182.

335. R Lavado-Autric, RM Calvo, R Martinez de Mena, G Morreale de Escobar, MJ Obregón 2013 Deiodinase activities in thyroids and tissues of iodine deficient female rats. Endocrinology 154:529–536.

336. P Santisteban, MJ Obregon, A Rodriguez-Pena, L Lamas, F Escobar del Rey, G Morreale de Escobar 1982 Are iodine-deficient rats euthyroid? Endocrinology 110:1780–1789.

337. MJ Obregon, P Santisteban, A Rodriguez-Pena, A Pascual, P Cartagena, A Ruiz-Marcos, L Lamas, F Escobar del Rey, G Morreale de Escobar 1984 Cerebral hypothyroidism in rats with adult-onset iodine deficiency. Endocrinology 115:614–624.

338. MJ Obregon, F Escobar del Rey, G Morreale de Escobar 2005 The effects of iodine deficiency on thyroid hormone deiodination. Thyroid 15:917–929.

339. F Escobar del Rey, C Ruiz de Ona, J Bernal, MJ Obregon, G Morreale de Escobar 1989 Generalized deficiency of 3,5,3′-triiodo-L-thyronine (T3) in tissues from rats on a low iodine intake, despite normal circulating T3 levels. Acta Endocrinol (Copenh) 120:490–498.

340. F Escobar del Rey, R Pastor, J Mallol, G Morreale de Escobar 1986 Effects of maternal iodine deficiency on the L-thyroxine and 3,5,3′-triiodo-L-thyronine contents of rat embryonic tissues before and after onset of fetal thyroid function. Endocrinology 118:1259–1265.

341. MJ Obregon, C Ruiz de Ona, R Calvo, F Escobar del Rey, G Morreale de Escobar 1991 Outer ring iodothyronine deiodinases and thyroid hormone economy: responses to iodine deficiency in the rat fetus and neonate. Endocrinology 129:2663–2673.

342. JR Martinez-Galan, P Pedraza, M Santacana, F Escobar del Rey, G Morreale de Escobar, A Ruiz-Marcos 1997 Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin Invest 99:2701–2709.

343. JR Martinez-Galan, P Pedraza, M Santacana, F Escobar del Rey, G Morreale de Escobar, A Ruiz-Marcos 1997 Myelin basic protein immunoreactivity in the internal capsule of neonates from rats on a low iodine intake or on methylmercaptoimidazole (MMI). Brain Res Dev Brain Res 101:249–256.

344. R Lavado-Autric, E Auso, JV Garcia-Velasco, C Arufe Mdel, F Escobar del Rey, P Berbel, G Morreale de Escobar 2003 Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 111:1073–1082.

345. G Morreale de Escobar, MJ Obregon, C Ruiz de Oña, F Escobar del Rey 1988 Transfer of thyroxine from the mother to the rat fetus near term: effects on brain 3,5,3′-triiodothyronine deficiency. Endocrinology 122:1521–1531.

346. R Calvo, MJ Obregon, C Ruiz de Ona, F Escobar del Rey, G Morreale de Escobar 1990 Congenital hypothyroidism as studied in rats: crucial role of maternal thyroxine (T4), but not of 3,5,3′ triiodothyronine (T3) in the protection of the fetal brain. J Clin Invest 86:889–899.

347. G Morreale de Escobar, R Calvo, MJ Obregon, F Escobar del Rey 1990 Contribution of maternal thyroxine to fetal thyroxine pools in normal rats near term. Endocrinology 126:2765–2767.

348. A Boelen, J Kwakkel, E Fliers 2011 Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32:670–693.

349. R Rocchi, H Kimura, SC Tzou, K Suzuki, NR Rose, A Pinchera, PW Ladenson, P Caturegli 2007 Toll-like receptor-MyD88 and Fc receptor pathways of mast cells mediate the thyroid dysfunctions observed during nonthyroidal illness. Proc Natl Acad Sci USA 104:6019–6024.

350. L Mebis, G van den Berghe 2009 The hypothalamus-pituitary-thyroid axis in critical illness. Neth J Med 67:332–340.

351. KR Vella, P Ramadoss, FS Lam, JC Harris, FD Ye, PD Same, NF O’Neill, E Maratos-Flier, AN Hollenberg 2011 NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab 14:780–790.

352. RS Ahima, D Prabakaran, C Mantzoros, D Qu, B Lowell, E Maratos-Flier, JS Flier 1996 Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252.

353. RP Peeters, PJ Wouters, E Kaptein, H van Toor, TJ Visser, G Van den Berghe 2003 Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 88:3202–3211.

354. SA Huang, AC Bianco 2008 Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab 4:148–155.

355. L Mebis, Y Debaveye, TJ Visser, G van den Berghe 2006 Changes within the thyroid axis during the course of critical illness. Endocrinol Metab Clin North Am 35:807–821, x.

356. MN Goodman, PR Larsen, MM Kaplan, TT Aoki, VR Young, NB Ruderman 1980 Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. Am J Physiol 239:E277–E286.

357. SY Wu 1990 The effect of fasting on thyroidal T4-5′ monodeiodinating activity in mice. Acta Endocrinol (Copenhagen) 122:175–180.

358. A Boelen, M van Beeren, X Vos, O Surovtseva, E Belegri, DJ Saaltink, E Vreugdenhil, A Kalsbeek, J Kwakkel, E Fliers 2012 Leptin administration restores the fasting-induced increase of hepatic type 3 deiodinase expression in mice. Thyroid 22:192–199.

359. ARC Harris, SL Fang, AG Vagenakis, LE Braverman 1978 Effect of starvation, nutrient replacement, and hypothyroidism on in vitro hepatic T4 to T3 conversion in the rat. Metabolism 27:1680–1690.

360. WB Kinlaw, HL Schwartz, JH Oppenheimer 1985 Decreased serum triiodothyronine in starving rats is due primarily to diminished thyroidal secretion of thyroxine. J Clin Invest 75:1238–1241.

361. A Boelen, J Kwakkel, WM Wiersinga, E Fliers 2006 Chronic local inflammation in mice results in decreased TRH and type 3 deiodinase mRNA expression in the hypothalamic paraventricular nucleus independently of diminished food intake. J Endocrinol 191:707–714.

362. A Boelen, J Kwakkel, A Alkemade, R Renckens, E Kaptein, G Kuiper, WM Wiersinga, TJ Visser 2005 Induction of type 3 deiodinase activity in inflammatory cells of mice with chronic local inflammation. Endocrinology 146:5128–5134.

363. A Boelen, MC Platvoet-ter Schiphorst, WM Wiersinga 1997 Immunoneutralization of interleukin-1, tumor necrosis factor, interleukin-6 or interferon does not prevent the LPS-induced sick euthyroid syndrome in mice. J Endocrinol 153:115–122.

364. A Boelen, MA Maas, CW Lowik, MC Platvoet, WM Wiersinga 1996 Induced illness in interleukin-6 (IL-6) knock-out mice: a causal role of IL-6 in the development of the low 3,5,3′-triiodothyronine syndrome. Endocrinology 137:5250–5254.

365. A Boelen, MC Platvoet-ter Schiphorst, O Bakker, WM Wiersinga 1995 The role of cytokines in the lipopolysaccharide-induced sick euthyroid syndrome in mice. J Endocrinol 146:475–483.

366. AC Bianco, MT Nunes, NS Hell, RM Maciel 1987 The role of glucocorticoids in the stress-induced reduction of extrathyroidal 3,5,3′-triiodothyronine generation in rats. Endocrinology 120:1033–1038.

367. L Mebis, Y Debaveye, B Ellger, S Derde, EJ Ververs, L Langouche, VM Darras, E Fliers, TJ Visser, G van den Berghe 2009 Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care 13:R147.

368. F Weekers, E Van Herck, W Coopmans, M Michalaki, CY Bowers, JD Veldhuis, G Van den Berghe 2002 A novel in vivo rabbit model of hypercatabolic critical illness reveals a biphasic neuroendocrine stress response. Endocrinology 143:764–774.

369. Y Debaveye, B Ellger, L Mebis, VM Darras, G Van den Berghe 2008 Regulation of tissue iodothyronine deiodinase activity in a model of prolonged critical illness. Thyroid 18:551–560.

370. A Boelen, J Kwakkel, CW Wieland, DL St Germain, E Fliers, A Hernandez 2009 Impaired bacterial clearance in type 3 deiodinase-deficient mice infected with Streptococcus pneumoniae. Endocrinology 150:1984–1990.

371. K Kondo, MS Harbuz, A Levy, SL Lightman 1997 Inhibition of the hypothalamic-pituitary-thyroid axis in response to lipopolysaccharide is independent of changes in circulating corticosteroids. Neuroimmunomodulation 4:188–194.

372. C Fekete, S Sarkar, MA Christoffolete, CH Emerson, AC Bianco, RM Lechan 2005 Bacterial lipopolysaccharide (LPS)-induced type 2 iodothyronine deiodinase (D2) activation in the mediobasal hypothalamus (MBH) is independent of the LPS-induced fall in serum thyroid hormone levels. Brain Research 1056:97–99.

373. C Fekete, B Gereben, M Doleschall, JW Harney, JM Dora, AC Bianco, S Sarkar, Z Liposits, W Rand, C Emerson, I Kacskovics, PR Larsen, RM Lechan 2004 Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology 145:1649–1655.

374. A Boelen, J Kwakkel, DC Thijssen-Timmer, A Alkemade, E Fliers, WM Wiersinga 2004 Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice. J Endocrinol 182:315–323.

375. A Zeöld, M Doleschall, MC Haffner, LP Capelo, J Menyhert, Z Liposits, WS da Silva, AC Bianco, I Kacskovics, C Fekete, B Gereben 2006 Characterization of the nuclear factor-kappa B responsiveness of the human DIO2 gene. Endocrinology 147:4419–4429.

376. A Lamirand, M Ramauge, M Pierre, F Courtin 2011 Bacterial lipopolysaccharide induces type 2 deiodinase in cultured rat astrocytes. J Endocrinol 208:183–192.

377. J Sap, A Muñoz, K Damm, Y Goldberg, J Ghysdael, A Leutz, H Beug, B Vennström 1986 The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324:635–640.

378. C Weinberger, CC Thompson, ES Ong, R Lebo, DJ Gruol, RM Evans 1986 The c-erb-A gene encodes a thyroid hormone receptor. Nature 324:641–646.

379. GA Brent, DD Moore, PR Larsen 1991 Thyroid hormone regulation of gene expression. Annu Rev Physiol 53:17–35.

380. CK Glass, R Franco, C Weinberger, VR Albert, RM Evans, MG Rosenfeld 1987 A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 329:738–741.

381. J Sap, A Muñoz, J Schmitt, H Stunnenberg, B Vennström 1989 Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 340:242–244.

382. SY Cheng 2000 Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1:9–18.

383. F Flamant, K Gauthier, J Samarut 2007 Thyroid hormones signaling is getting more complex: STORMs are coming. Mol Endocrinol 21:321–333.

384. [Deleted.]

385. IH Chan, ML Privalsky 2009 Isoform-specific transcriptional activity of overlapping target genes that respond to thyroid hormone receptors alpha1 and beta1. Mol Endocrinol 23:1758–1775.

386. B Gloss, S Trost, W Bluhm, E Swanson, R Clark, R Winkfein, K Janzen, W Giles, O Chassande, J Samarut, W Dillmann 2001 Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142:544–550.

387. W Wan, B Farboud, ML Privalsky 2005 Pituitary resistance to thyroid hormone syndrome is associated with T3 receptor mutants that selectively impair beta2 isoform function. Mol Endocrinol 19:1529–1542.

388. Z Yang, ML Privalsky 2001 Isoform-specific transcriptional regulation by thyroid hormone receptors: hormone-independent activation operates through a steroid receptor mode of co-activator interaction. Mol Endocrinol 15:1170–1185.

389. XG Zhu, P McPhie, KH Lin, SY Cheng 1997 The differential hormone-dependent transcriptional activation of thyroid hormone receptor isoforms is mediated by interplay of their domains. J Biol Chem 272:9048–9054.

390. A Flores-Morales, H Gullberg, L Fernandez, N Stahlberg, NH Lee, B Vennstrom, G Norstedt 2002 Patterns of liver gene expression governed by TRbeta. Mol Endocrinol 16:1257–1268.

391. A Munoz, A Rodriguez-Pena, A Perez-Castillo, B Ferreiro, JG Sutcliffe, J Bernal 1991 Effects of neonatal hypothyroidism on rat brain gene expression. Mol Endocrinol 5:273–280.

392. CC Thompson 1996 Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J Neurosci 16:7832–7840.

393. PM Yen, X Feng, F Flamant, Y Chen, RL Walker, RE Weiss, O Chassande, J Samarut, S Refetoff, PS Meltzer 2003 Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO Rep 4:581–587.

394. J Bigler, RN Eisenman 1994 Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes. Mol Cell Biol 14:7621–7632.

395. JE Royland, JS Parker, ME Gilbert 2008 A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain. J Neuroendocrinol 20:1319–1338.

396. A Guadaño-Ferraz, MJ Escámez, B Morte, P Vargiu, J Bernal 1997 Transcriptional induction of RC3/neurogranin by thyroid hormone: differential neuronal sensitivity is not correlated with thyroid hormone receptor distribution in the brain. Brain Res Mol Brain Res 49:37–44.

397. GW Anderson, RJ Larson, DR Oas, CR Sandhofer, HL Schwartz, CN Mariash, JH Oppenheimer 1998 Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. J Biol Chem 273:16391–16399.

398. L Ng, A Lu, A Swaroop, DS Sharlin, A Swaroop, D Forrest 2011 Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development. J Neurosci 31:11118–11125.

399. [Deleted.]

400. H Dong, CL Yauk, A Rowan-Carroll, SH You, RT Zoeller, I Lambert, MG Wade 2009 Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum. PLoS One 4:e4610.

401. B Morte, D Diez, E Auso, MM Belinchon, P Gil-Ibanez, C Grijota-Martinez, D Navarro, G Morreale de Escobar, P Berbel, J Bernal 2010 Thyroid hormone regulation of gene expression in the developing rat fetal cerebral cortex: prominent role of the Ca2+/calmodulin-dependent protein kinase IV pathway. Endocrinology 151:810–820.

402. GJ Kahaly, WH Dillmann 2005 Thyroid hormone action in the heart. Endocr Rev 26:704–728.

403. MO Ribeiro, SD Bianco, M Kaneshige, JJ Schultz, SY Cheng, AC Bianco, GA Brent 2010 Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis. Endocrinology 151:432–440.

404. AM Wang, MV Doyle, DF Mark 1989 Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86:9717–9721.

405. A Sood, HL Schwartz, JH Oppenheimer 1996 Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat. Biochem Biophys Res Commun 222:287–291.

406. SA Bustin 2000 Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193.

407. D Fraga, T Meulia, S Fenster 2008 Real-time PCR In: ARO Cavalcanti, N Stover (eds) Current Protocols Essential Laboratory Techniques. John Wiley and Sons, New York, pp 10.3.1–10.3.33.

408. T Nolan, RE Hands, SA Bustin 2006 Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582.

409. GC Ness, LC Pendleton 1991 Thyroid hormone increases glyceraldehyde 3-phosphate dehydrogenase gene expression in rat liver. FEBS Lett 288:21–22.

410. R Poddar, S Paul, S Chaudhury, PK Sarkar 1996 Regulation of actin and tubulin gene expression by thyroid hormone during rat brain development. Brain Res Mol Brain Res 35:111–118.

411. WE Visser, KA Heemstra, SM Swagemakers, Z Ozgur, EP Corssmit, J Burggraaf, WF van Ijcken, PJ van der Spek, JW Smit, TJ Visser 2009 Physiological thyroid hormone levels regulate numerous skeletal muscle transcripts. J Clin Endocrinol Metab 94:3487–3496.

412. D Diez, C Grijota-Martinez, P Agretti, G De Marco, M Tonacchera, A Pinchera, G Morreale de Escobar, J Bernal, B Morte 2008 Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum. Endocrinology 149:3989–4000.

413. F Chiappini, P Ramadoss, KR Vella, LL Cunha, FD Ye, RC Stuart, EA Nillni, AN Hollenberg 2013 Family members CREB and CREM control thyrotropin-releasing hormone (TRH) expression in the hypothalamus. Mol Cell Endocrinol 365:84–94.

414. KJ Livak, TD Schmittgen 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408.

415. T Nolan, RE Hands, SA Bustin 2006 Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582.

416. [Deleted.]

417. A Grewal, P Lambert, J Stockton 2007 Analysis of expression data: an overview. Curr Protoc Bioinformatics Chapter 7:Unit 7.1.

418. RD Hawkins, GC Hon, B Ren 2010 Next-generation genomics: an integrative approach. Nat Rev Genet 11:476–486.

419. V Espina, J Milia, G Wu, S Cowherd, LA Liotta 2006 Laser capture microdissection. Methods Mol Biol 319:213–229.

420. DW Galbraith, R Elumalai, FC Gong 2004 Integrative flow cytometric and microarray approaches for use in transcriptional profiling. Methods Mol Biol 263:259–280.

421. CM Schoonover, MM Seibel, DM Jolson, MJ Stack, RJ Rahman, SA Jones, CN Mariash, GW Anderson 2004 Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Endocrinology 145:5013–5020.

422. DS Sharlin, D Tighe, ME Gilbert, RT Zoeller 2008 The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine. Endocrinology 149:2527–2536.

423. TQ Phan, MM Jow, ML Privalsky 2010 DNA recognition by thyroid hormone and retinoic acid receptors: 3,4,5 rule modified. Mol Cell Endocrinol 319:88–98.

424. JD Chen, RM Evans 1995 A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.

425. JD Fondell, H Ge, RG Roeder 1996 Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci USA 93:8329–8333.

426. AJ Hörlein, AM Näär, T Heinzel, J Torchia, B Gloss, R Kurokawa, A Ryan, Y Kamei, M Söderström, CK Glass, MG Rosenfeld 1995 Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.

427. SJ Gould, S Subramani 1988 Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175:5–13.

428. IH Chan, AD Borowsky, ML Privalsky 2008 A cautionary note as to the use of pBi-L and related luciferase/transgenic vectors in the study of thyroid endocrinology. Thyroid 18:665–666.

429. AS Shifera, JA Hardin 2010 Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays. Anal Biochem 396:167–172.

430. I Jones, L Ng, H Liu, D Forrest 2007 An intron control region differentially regulates expression of thyroid hormone receptor beta2 in the cochlea, pituitary, and cone photoreceptors. Mol Endocrinol 21:1108–1119.

431. M Sjöberg, B Vennström, D Forrest 1992 Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for alpha and N-terminal variant beta receptors. Development 114:39–47.

432. WM Wood, JM Dowding, BR Haugen, TM Bright, DF Gordon, EC Ridgway 1994 Structural and functional characterization of the genomic locus encoding the murine beta 2 thyroid hormone receptor. Mol Endocrinol 8:1605–1617.

433. J Sap, L de Magistris, H Stunnenberg, B Vennstrom 1990 A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J 9:887–896.

434. K Umesono, KK Murakami, CC Thompson, RM Evans 1991 Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266.

435. LM Hellman, MG Fried 2007 Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2:1849–1861.

436. L Ng, D Forrest, BR Haugen, WM Wood, T Curran 1995 N-terminal variants of thyroid hormone receptor beta: differential function and potential contribution to syndrome of resistance to thyroid hormone. Mol Endocrinol 9:1202–1213.

437. PM Yen, DS Darling, RL Carter, M Forgione, PK Umeda, WW Chin 1992 Triiodothyronine (T3) decreases binding to DNA by T3-receptor homodimers but not receptor-auxiliary protein heterodimers. J Biol Chem 267:3565–3568.

438. M Belakavadi, J Saunders, N Weisleder, PS Raghava, JD Fondell 2010 Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 151:2946–2956.

439. MI Chiamolera, AR Sidhaye, S Matsumoto, Q He, K Hashimoto, TM Ortiga-Carvalho, FE Wondisford 2012 Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26:926–939.

440. P Bilesimo, P Jolivet, G Alfama, N Buisine, S Le Mevel, E Havis, BA Demeneix, LM Sachs 2011 Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses. Mol Endocrinol 25:225–237.

441. K Matsuura, K Fujimoto, L Fu, YB Shi 2012 Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development. Endocrinology 153:961–972.

442. E Havis, S Le Mevel, G Morvan Dubois, DL Shi, TS Scanlan, BA Demeneix, LM Sachs 2006 Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development. EMBO J 25:4943–4951.

443. MF Carey, CL Peterson, ST Smale 2009 Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 2009:pdb. prot5279.

444. A Wagschal, K Delaval, M Pannetier, P Arnaud, R Feil 2007 PCR-based analysis of immunoprecipitated chromatin. Cold Spring Harb Protoc 2007:pdb.prot4768.

445. B Morte, J Manzano, T Scanlan, B Vennström, J Bernal 2002 Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 99:3985–3989.

446. ED Abel, RS Ahima, ME Boers, JK Elmquist, FE Wondisford 2001 Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest 107:1017–1023.

447. D Forrest, E Hanebuth, RJ Smeyne, N Everds, CL Stewart, JM Wehner, T Curran 1996 Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 15:3006–3015.

448. D Forrest, LC Erway, L Ng, R Altschuler, T Curran 1996 Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13:354–357.

449. L Ng, JB Hurley, B Dierks, M Srinivas, C Salto, B Vennstrom, TA Reh, D Forrest 2001 A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98.

450. LL Amma, A Campos-Barros, Z Wang, B Vennstrom, D Forrest 2001 Distinct tissue-specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression. Mol Endocrinol 15:467–475.

451. L Wikström, C Johansson, C Saltó, C Barlow, A Campos Barros, F Baas, D Forrest, P Thorén, B Vennström 1998 Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461.

452. A Fraichard, O Chassande, M Plateroti, JP Roux, J Trouillas, C Dehay, C Legrand, K Gauthier, M Kedinger, L Malaval, B Rousset, J Samarut 1997 The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 16:4412–4420.

453. JH Bassett, GR Williams 2009 The skeletal phenotypes of TRalpha and TRbeta mutant mice. J Mol Endocrinol 42:269–282.

454. A Guadaño-Ferraz, R Benavides-Piccione, C Venero, C Lancha, B Vennström, C Sandi, J DeFelipe, J Bernal 2003 Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8:30–38.

455. [Deleted.]

456. B Vennström, J Mittag, K Wallis 2008 Severe psychomotor and metabolic damages caused by a mutant thyroid hormone receptor alpha 1 in mice: can patients with a similar mutation be found and treated? Acta Paediatr 97:1605–1610.

457. K Gauthier, O Chassande, M Plateroti, JP Roux, C Legrand, B Pain, B Rousset, R Weiss, J Trouillas, J Samarut 1999 Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J 18:623–631.

458. S Refetoff 2003 Resistance to thyroid hormone with and without receptor gene mutations. Annales d’endocrinologie 64:23–25.

459. E Bochukova, N Schoenmakers, M Agostini, E Schoenmakers, O Rajanayagam, JM Keogh, E Henning, J Reinemund, E Gevers, M Sarri, K Downes, A Offiah, A Albanese, D Halsall, JW Schwabe, M Bain, K Lindley, F Muntoni, F Vargha-Khadem, M Dattani, IS Farooqi, M Gurnell, K Chatterjee 2012 A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366:243–249.

460. A van Mullem, R van Heerebeek, D Chrysis, E Visser, M Medici, M Andrikoula, A Tsatsoulis, R Peeters, TJ Visser 2012 Clinical phenotype and mutant TRalpha1. N Engl J Med 366:1451–1453.

461. SY Cheng 2005 Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol Metab 16:176–182.

462. K Hashimoto, FH Curty, PP Borges, CE Lee, ED Abel, JK Elmquist, RN Cohen, FE Wondisford 2001 An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA 98:3998–4003.

463. M Kaneshige, K Kaneshige, X Zhu, A Dace, L Garrett, TA Carter, R Kazlauskaite, DG Pankratz, A Wynshaw-Boris, S Refetoff, B Weintraub, MC Willingham, C Barlow, S Cheng 2000 Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97:13209–13214.

464. YY Liu, JJ Schultz, GA Brent 2003 A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278:38913–38920.

465. TM Ortiga-Carvalho, N Shibusawa, A Nikrodhanond, KJ Oliveira, DS Machado, XH Liao, RN Cohen, S Refetoff, FE Wondisford 2005 Negative regulation by thyroid hormone receptor requires an intact coactivator-binding surface. J Clin Invest 115:2517–2523.

466. [Deleted.]

467. L Quignodon, C Legrand, N Allioli, A Guadano-Ferraz, J Bernal, J Samarut, F Flamant 2004 Thyroid hormone signaling is highly heterogeneous during pre- and postnatal brain development. J Mol Endocrinol 33:467–476.

468. C Nucera, P Muzzi, C Tiveron, A Farsetti, F La Regina, B Foglio, SC Shih, F Moretti, L Della Pietra, F Mancini, A Sacchi, F Trimarchi, A Vercelli, A Pontecorvi 2010 Maternal thyroid hormones are transcriptionally active during embryo-foetal development: results from a novel transgenic mouse model. J Cell Mol Med 14:2417–2435.

469. K Wallis, S Dudazy, M van Hogerlinden, K Nordstrom, J Mittag, B Vennstrom 2010 The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 24:1904–1916.

470. GR Williams 2008 Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20:784–794.

471. RT Zoeller, J Rovet 2004 Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16:809–818.

472. DC Rogers, EM Fisher, SD Brown, J Peters, AJ Hunter, JE Martin 1997 Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713.

473. SD Brown, P Chambon, and MH de Angelis 2005 EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat Genet 37:1155.

474. WC Skarnes, B Rosen, AP West, M Koutsourakis, W Bushell, V Iyer, AO Mujica, M Thomas, J Harrow, T Cox, D Jackson, J Severin, P Biggs, J Fu, M Nefedov, PJ de Jong, AF Stewart, A Bradley 2011 A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342.

475. SM Wheeler, KA Willoughby, MP McAndrews, JF Rovet 2011 Hippocampal size and memory functioning in children and adolescents with congenital hypothyroidism. J Clin Endocrinol Metab 96:E1427–1434.

476. G Morreale de Escobar, A Ruiz Marcos, F Escobar del Rey 1983 Thyroid hormones and the developing brain. In: JH Dussault, P Walker (eds) Congenital Hypothyroidism. Marcel Dekker, New York, pp 85–126.

477. MI Castro, S Alex, RA Young, LE Braverman, CH Emerson 1986 Total and free serum thyroid hormone concentrations in fetal and adult pregnant and nonpregnant guinea pigs. Endocrinology 118:533–537.

478. K Wallis, M Sjögren, M van Hogerlinden, G Silberberg, A Fisahn, K Nordström, L Larsson, H Westerblad, G Morreale de Escobar, O Shupliakov, B Vennström 2008 Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J Neurosci 28:1904–1915.

479. C Fekete, BC Freitas, A Zeöld, G Wittmann, A Kádár, Z Liposits, MA Christoffolete, P Singru, RM Lechan, AC Bianco, B Gereben 2007 Expression patterns of WSB-1 and USP-33 underlie cell-specific posttranslational control of type 2 deiodinase in the rat brain. Endocrinology 148:4865–4874.

480. J Bernal, A Guadano-Ferraz 2002 Analysis of thyroid hormone-dependent genes in the brain by in situ hybridization. Methods Mol Biol 202:71–90.

481. A Guadano-Ferraz, MJ Escamez, E Rausell, J Bernal 1999 Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems. J Neurosci 19:3430–3439.

482. MA Iniguez, L De Lecea, A Guadano-Ferraz, B Morte, D Gerendasy, JG Sutcliffe, J Bernal 1996 Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology 137:1032–1041.

483. C Venero, A Guadano-Ferraz, AI Herrero, K Nordstrom, J Manzano, G Morreale de Escobar, J Bernal, B Vennstrom 2005 Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19:2152–2163.

484. E Hrabovszky, SL Petersen 2002 Increased concentrations of radioisotopically-labeled complementary ribonucleic acid probe, dextran sulfate, and dithiothreitol in the hybridization buffer can improve results of in situ hybridization histochemistry. J Histochem Cytochem 50:1389–1400.

485. A Campos-Barros, LL Amma, JS Faris, R Shailam, MW Kelley, D Forrest 2000 Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing. Proc Natl Acad Sci USA 97:1287–1292.

486. RM Lechan, P Wu, IMD Jackson, H Wolfe, S Cooperman, G Mandel, RH Goodman 1986 Thyrotropin-releasing hormone precursor: characterization in rat brain. Science 231:159–161.

487. TP Segerson, J Kauer, HC Wolfe, H Mobtaker, P Wu, IM Jackson, RM Lechan 1987 Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238:78–80.

488. EM Dyess, TP Segerson, Z Liposits, WK Paull, MM Kaplan, P Wu, IMD Jackson, RM Lechan 1988 Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinology 123:2291–2297.

489. I Kakucska, W Rand, RM Lechan 1992 Thyrotropin-releasing hormone (TRH) gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology 130:2845–2850.

490. [Deleted.]

491. V Espina, JD Wulfkuhle, VS Calvert, A VanMeter, W Zhou, G Coukos, DH Geho, Petricoin EF 3rd, LA Liotta 2006 Laser-capture microdissection. Nat Protoc 1:586–603.

492. A Hernandez, B Morte, MM Belinchon, A Ceballos, J Bernal 2012 Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by t3 in the mouse cerebral cortex. Endocrinology 153:2919–2928.

493. H Dong, M Wade, A Williams, A Lee, GR Douglas, C Yauk 2005 Molecular insight into the effects of hypothyroidism on the developing cerebellum. Biochem Biophys Res Commun 330:1182–1193.

494. F Chatonnet, R Guyot, F Picou, M Bondesson, F Flamant 2012 Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons. PLoS One 7:e30703.

495. JE Silva, P Rudas 1990 Effect of congenital hypothyroidism on microtubule-associated protein-2 expression in the cerebellum of the rat. Endocrinology 126:1276–1282.

496. DS Sharlin, TJ Visser, D Forrest 2011 Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea. Endocrinology 152:5053–5064.

497. M Alvarez-Dolado, M Ruiz, JA Del Río, S Alcántara, F Burgaya, M Sheldon, K Nakajima, J Bernal, BW Howell, T Curran, E Soriano, A Muñoz 1999 Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci 19:6979–6993.

498. M Alvarez-Dolado, JM Gonzalez-Sancho, J Bernal, A Munoz 1998 Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84:309–322.

499. EA Cordas, L Ng, A Hernandez, M Kaneshige, SY Cheng, D Forrest 2012 Thyroid hormone receptors control developmental maturation of the middle ear and the size of the ossicular bones. Endocrinology 153:1548–1560.

500. [Deleted.]

501. H Winter, L Rüttiger, M Müller, S Kuhn, N Brandt, U Zimmermann, B Hirt, A Bress, M Sausbier, A Conscience, F Flamant, Y Tian, J Zuo, M Pfister, P Ruth, H Löwenheim, J Samarut, J Engel, M Knipper 2009 Deafness in TRbeta mutants is caused by malformation of the tectorial membrane. J Neurosci 29:2581–2587.

502. AJ Griffith, YM Szymko, M Kaneshige, RE Quinonez, K Kaneshige, KA Heintz, MA Mastroianni, MW Kelley, SY Cheng 2002 Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor beta gene disrupts cochlear morphogenesis. J Assoc Res Otolaryngol 3:279–288.

503. ML Applebury, F Farhangfar, M Glosmann, K Hashimoto, K Kage, JT Robbins, N Shibusawa, FE Wondisford, H Zhang 2007 Transient expression of thyroid hormone nuclear receptor TRbeta2 sets S opsin patterning during cone photoreceptor genesis. Dev Dyn 236:1203–1212.

504. A Lu, L Ng, M Ma, B Kefas, TF Davies, A Hernandez, CC Chan, D Forrest 2009 Retarded developmental expression and patterning of retinal cone opsins in hypothyroid mice. Endocrinology 150:1536–1544.

505. [Deleted.]

506. A Glaschke, M Glosmann, L Peichl 2010 Developmental changes of cone opsin expression but not retinal morphology in the hypothyroid Pax8 knockout mouse. Invest Ophthalmol Vis Sci 51:1719–1727.

507. ME Gilbert, L Sui, MJ Walker, W Anderson, S Thomas, SN Smoller, JP Schon, S Phani, JH Goodman 2007 Thyroid hormone insufficiency during brain development reduces parvalbumin immunoreactivity and inhibitory function in the hippocampus. Endocrinology 148:92–102.

508. ME Gilbert, C Paczkowski 2003 Propylthiouracil (PTU)-induced hypothyroidism in the developing rat impairs synaptic transmission and plasticity in the dentate gyrus of the adult hippocampus. Brain Res Dev Brain Res 145:19–29.

509. L Sui, ME Gilbert 2003 Pre- and postnatal propylthiouracil-induced hypothyroidism impairs synaptic transmission and plasticity in area CA1 of the neonatal rat hippocampus. Endocrinology 144:4195–4203.

510. ME Gilbert 2004 Alterations in synaptic transmission and plasticity in area CA1 of adult hippocampus following developmental hypothyroidism. Brain Res Dev Brain Res 148:11–18.

511. M Pilhatsch, C Winter, K Nordstrom, B Vennstrom, M Bauer, G Juckel 2010 Increased depressive behaviour in mice harboring the mutant thyroid hormone receptor alpha 1. Behav Brain Res 214:187–192.

512. C Mombereau, K Kaupmann, M Gassmann, B Bettler, H van der Putten, JF Cryan 2005 Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. Neuroreport 16:307–310.

513. A Reif, A Schmitt, S Fritzen, S Chourbaji, C Bartsch, A Urani, M Wycislo, R Mössner, C Sommer, P Gass, KP Lesch 2004 Differential effect of endothelial nitric oxide synthase (NOS-III) on the regulation of adult neurogenesis and behaviour. Eur J Neurosci 20:885–895.

514. M López, L Varela, MJ Vázquez, S Rodríguez-Cuenca, CR González, VR Velagapudi, DA Morgan, E Schoenmakers, K Agassandian, R Lage, PB Martínez de Morentin, S Tovar, R Nogueiras, D Carling, C Lelliott, R Gallego, M Oresic, K Chatterjee, AK Saha, K Rahmouni, C Diéguez, A Vidal-Puig 2010 Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16:1001–1008.

515. A Coppola, ZW Liu, ZB Andrews, E Paradis, MC Roy, JM Friedman, D Ricquier, D Richard, TL Horvath, XB Gao, S Diano 2007 A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab 5:21–33.

516. WM Kong, NM Martin, KL Smith, JV Gardiner, IP Connoley, DA Stephens, WS Dhillo, MA Ghatei, CJ Small, SR Bloom 2004 Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology 145:5252–5258.

517. P Barrett, FJ Ebling, S Schuhler, D Wilson, AW Ross, A Warner, P Jethwa, A Boelen, TJ Visser, DM Ozanne, ZA Archer, JG Mercer, PJ Morgan 2007 Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608–3617.

518. C Fekete, G Legradi, E Mihaly, QH Huang, JB Tatro, WM Rand, CH Emerson, RM Lechan 2000 alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci 20:1550–1558.

519. C Fekete, J Kelly, E Mihaly, S Sarkar, WM Rand, G Legradi, CH Emerson, RM Lechan 2001 Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology 142:2606–2613.

520. C Fekete, S Sarkar, WM Rand, JW Harney, CH Emerson, AC Bianco, RM Lechan 2002 Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology 143:3846–3853.

521. C Fekete, S Sarkar, WM Rand, JW Harney, CH Emerson, AC Bianco, A Beck-Sickinger, RM Lechan 2002 Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic-pituitary-thyroid axis. Endocrinology 143:4513–4519.

522. C Fekete, DL Marks, S Sarkar, CH Emerson, WM Rand, RD Cone, RM Lechan 2004 Effect of Agouti-related protein in regulation of the hypothalamic-pituitary-thyroid axis in the melanocortin 4 receptor knockout mouse. Endocrinology 145:4816–4821.

523. R Garza, JH Dussault, J Puymirat 1988 Influence of triiodothyronine (L-T3) on the morphological and biochemical development of fetal brain acetylcholinesterase-positive neurons cultured in a chemically defined medium. Brain Res 471:287–297.

524. H Heuer, CA Mason 2003 Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J Neurosci 23:10604–10612.

525. YY Liu, KH Tachiki, GA Brent 2002 A targeted thyroid hormone receptor alpha gene dominant-negative mutation (P398H) selectively impairs gene expression in differentiated embryonic stem cells. Endocrinology 143:2664–2672.

526. P Mohacsik, A Zeold, AC Bianco, B Gereben 2011 Thyroid hormone and the neuroglia: both source and target. J Thyroid Res 2011:215718.

527. J Ruel, JH Dussault 1985 Triiodothyronine increases glutamine synthetase activity in primary cultures of rat cerebellum. Brain Res 353:83–88.

528. V Niederkinkhaus, R Marx, G Hoffmann, ID Dietzel 2009 Thyroid hormone (T3)-induced up-regulation of voltage-activated sodium current in cultured postnatal hippocampal neurons requires secretion of soluble factors from glial cells. Mol Endocrinol 23:1494–1504.

529. B. Emery Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782.

530. KA Strait, DJ Carlson, HL Schwartz, JH Oppenheimer 1997 Transient stimulation of myelin basic protein gene expression in differentiating cultured oligodendrocytes: a model for 3,5,3′-triiodothyronine-induced brain development. Endocrinology 138:635–641.

531. HH Samuels, JS Tsai, R Cintron 1973 Thyroid hormone action: a cell-culture system responsive to physiological concentrations of thyroid hormones. Science 181:1253–1256.

532. MA Lazar 1990 Sodium butyrate selectively alters thyroid hormone receptor gene expression in GH3 cells. J Biol Chem 265:17474–17477.

533. B Yusta, ET Alarid, DF Gordon, EC Ridgway, PL Mellon 1998 The thyrotropin beta-subunit gene is repressed by thyroid hormone in a novel thyrotrope cell line, mouse T alphaT1 cells. Endocrinology 139:4476–4482.

534. W Mai, MF Janier, N Allioli, L Quignodon, T Chuzel, F Flamant, J Samarut 2004 Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101:10332–10337.

535. I Klein, K Ojamaa 2001 Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509.

536. [Deleted.]

537. K Ojamaa, AM Samarel, JM Kupfer, C Hong, I Klein 1992 Thyroid hormone effects on cardiac gene expression independent of cardiac growth and protein synthesis. Am J Physiol Endocrinol Metab 263:E534–E540.

538. [Deleted.]

539. TA Thomas, JA Kuzman, BE Anderson, SM Andersen, EH Schlenker, MS Holder, AM Gerdes 2005 Thyroid hormones induce unique and potentially beneficial changes in cardiac myocyte shape in hypertensive rats near heart failure. Am J Physiol Heart Circ Physiol 288:H2118–H2122.

540. KK Henderson, S Danzi, JT Paul, G Leya, I Klein, AM Samarel 2009 Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail 2:243–252.

541. J Suarez, BT Scott, JA Suarez-Ramirez, CV Chavira, WH Dillmann 2010 Thyroid hormone inhibits ERK phosphorylation in pressure overload-induced hypertrophied mouse hearts through a receptor-mediated mechanism. Am J Physiol Cell Physiol 299:C1524–C1529.

542. E van Rooij, LB Sutherland, X Qi, JA Richardson, J Hill, EN Olson 2007 Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579.

543. M Minakawa, K Takeuchi, K Ito, T Tsushima, K Fukui, S Takaya, I Fukuda 2003 Restoration of sarcoplasmic reticulum protein level by thyroid hormone contributes to partial improvement of myocardial function, but not to glucose metabolism in an early failing heart. Eur J Cardiothorac Surg 24:493–501.

544. K Kinugawa, K Yonekura, RC Ribeiro, Y Eto, T Aoyagi, JD Baxter, SA Camacho, MR Bristow, CS Long, PC Simpson 2001 Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598.

545. CJ Hartley, GE Taffet, AK Reddy, ML Entman, LH Michael 2002 Noninvasive cardiovascular phenotyping in mice. ILAR J 43:147–158.

546. O Borst, C Ochmann, T Schonberger, C Jacoby, K Stellos, P Seizer, U Flogel, F Lang, M Gawaz 2011 Methods employed for induction and analysis of experimental myocardial infarction in mice. Cell Physiol Biochem 28:1–12.

547. EM Redout, A van der Toorn, MJ Zuidwijk, CW van de Kolk, CJ van Echteld, RJ Musters, C van Hardeveld, WJ Paulus, WS Simonides 2010 Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 298:H1038–H1047.

548. C Johansson, P Thoren 1997 The effects of triiodothyronine (T3) on heart rate, temperature and ECG measured with telemetry in freely moving mice. Acta Physiol Scand 160:133–138.

549. J Mittag, B Davis, M Vujovic, A Arner, B Vennstrom 2010 Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor-alpha1. Endocrinology 151:2388–2395.

550. BN Van Vliet, J McGuire, L Chafe, A Leonard, A Joshi, JP Montani 2006 Phenotyping the level of blood pressure by telemetry in mice. Clin Exp Pharmacol Physiol 33:1007–1015.

551. MC de Waard, J van der Velden, V Bito, S Ozdemir, L Biesmans, NM Boontje, DH Dekkers, K Schoonderwoerd, HC Schuurbiers, R de Crom, GJ Stienen, KR Sipido, JM Lamers, DJ Duncker 2007 Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction. Circ Res 100:1079–1088.

552. LC Heather, MA Cole, HJ Atherton, WA Coumans, RD Evans, DJ Tyler, JF Glatz, JJ Luiken, K Clarke 2010 Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart. Endocrinology 151:422–431.

553. C Pantos, I Mourouzis, T Saranteas, G Clavé, H Ligeret, P Noack-Fraissignes, PY Renard, M Massonneau, P Perimenis, D Spanou, G Kostopanagiotou, DV Cokkinos 2009 Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol 104:69–77.

554. RE Beekman, C van Hardeveld, WS Simonides 1989 On the mechanism of the reduction by thyroid hormone of beta-adrenergic relaxation rate stimulation in rat heart. Biochem J 259:229–236.

555. FJ Sutherland, MJ Shattock, KE Baker, DJ Hearse 2003 Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol Physiol 30:867–878.

556. OM Hyyti, AK Olson, M Ge, XH Ning, NE Buroker, Y Chung, T Jue, MA Portman 2008 Cardioselective dominant-negative thyroid hormone receptor (Delta337T) modulates myocardial metabolism and contractile efficiency. Am J Physiol Endocrinol Metab 295:E420–E427.

557. MA Portman 2008 Thyroid hormone regulation of heart metabolism. Thyroid 18:217–225.

558. PP de Tombe, HE ter Keurs 1991 Lack of effect of isoproterenol on unloaded velocity of sarcomere shortening in rat cardiac trabeculae. Circ Res 68:382–391.

559. HE ter Keurs, N Deis, A Landesberg, TT Nguyen, L Livshitz, B Stuyvers, ML Zhang 2003 Force, sarcomere shortening velocity and ATPase activity. Adv Exp Med Biol 538:583-602; discussion 602.

560. OH Bing, NL Hague, CL Perreault, CH Conrad, WW Brooks, S Sen, JP Morgan 1994 Thyroid hormone effects on intracellular calcium and inotropic responses of rat ventricular myocardium. Am J Physiol Heart Circ Physiol 267:H1112–H1121.

561. S Di Meo, P Venditti, T De Leo 1997 Effect of iodothyronines on electrophysiological properties of rat papillary muscle fibres. Hormone Metabolism Research 29:225–230.

562. Y Xu, MM Monasky, N Hiranandani, KM Haizlip, GE Billman, PM Janssen 2011 Effect of twitch interval duration on the contractile function of subsequent twitches in isolated rat, rabbit, and dog myocardium under physiological conditions. J Appl Physiol 111:1159–1167.

563. D Szczesna-Cordary, M Jones, JR Moore, J Watt, WG Kerrick, Y Xu, Y Wang, C Wagg, GD Lopaschuk 2007 Myosin regulatory light chain E22K mutation results in decreased cardiac intracellular calcium and force transients. FASEB J 21:3974–3985.

564. DD Belke, B Gloss, EA Swanson, WH Dillmann 2007 Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2870–2877.

565. RE Beekman, C van Hardeveld, WS Simonides 1990 Thyroid status and beta-agonistic effects on cytosolic calcium concentrations in single rat cardiac myocytes activated by electrical stimulation or high-K+ depolarization. Biochem J 268:563–569.

566. E Holt, I Sjaastad, PK Lunde, G Christensen, OM Sejersted 1999 Thyroid hormone control of contraction and the Ca(2+)-ATPase/phospholamban complex in adult rat ventricular myocytes. J Mol Cell Cardiol 31:645–656.

567. AL Des Tombe, BJ Van Beek-Harmsen, MB Lee-De Groot, WJ Van Der Laarse 2002 Calibrated histochemistry applied to oxygen supply and demand in hypertrophied rat myocardium. Microsc Res Tech 58:412–420.

568. P Whittaker, RA Kloner, DR Boughner, JG Pickering 1994 Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89:397–410.

569. K Pandya, HS Kim, O Smithies 2006 Fibrosis, not cell size, delineates beta-myosin heavy chain reexpression during cardiac hypertrophy and normal aging in vivo. Proc Natl Acad Sci USA 103:16864–16869.

570. JE Lopez, BE Myagmar, PM Swigart, MD Montgomery, S Haynam, M Bigos, MC Rodrigo, PC Simpson 2011 beta-Myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circ Res 109:629–638.

571. C Pantos, I Mourouzis, C Xinaris, AD Kokkinos, K Markakis, A Dimopoulos, M Panagiotou, T Saranteas, G Kostopanagiotou, DV Cokkinos 2007 Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. Eur J Endocrinol 156:415–424.

572. K Ojamaa, JD Klemperer, SS MacGilvray, I Klein, A Samarel 1996 Thyroid hormone and hemodynamic regulation of beta-myosin heavy chain promoter in the heart. Endocrinology 137:802–808.

573. ZQ Sun, K Ojamaa, WA Coetzee, M Artman, I Klein 2000 Effects of thyroid hormone on action potential and repolarizing currents in rat ventricular myocytes. Am J Physiol Endocrinol Metab 278:E302–E307.

574. D Bell, BJ McDermott 2000 Contribution of de novo protein synthesis to the hypertrophic effect of IGF-1 but not of thyroid hormones in adult ventricular cardiomyocytes. Mol Cell Biochem 206:113–124.

575. A Muller, MJ Zuidwijk, WS Simonides, C van Hardeveld 1997 Modulation of SERCA2 expression by thyroid hormone and norepinephrine in cardiocytes: role of contractility. Am J Physiol Heart Circ Physiol 272:H1876–H1885.

576. R Vlasblom, A Muller, RJ Musters, MJ Zuidwijk, C Van Hardeveld, WJ Paulus, WS Simonides 2004 Contractile arrest reveals calcium-dependent stimulation of SERCA2a mRNA expression in cultured ventricular cardiomyocytes. Cardiovasc Res 63:537–544.

577. M van Dijk-Ottens, IH Vos, PW Cornelissen, A de Bruin, ME Everts 2010 Thyroid hormone-induced cardiac mechano growth factor expression depends on beating activity. Endocrinology 151:830–838.

578. B Riedel, Y Jia, J Du, S Akerman, X Huang 2005 Thyroid hormone inhibits slow skeletal TnI expression in cardiac TnI-null myocardial cells. Tissue Cell 37:47–51.

579. SM van der Heide, BJ Joosten, BS Dragt, ME Everts, PH Klaren 2007 A physiological role for glucuronidated thyroid hormones: preferential uptake by H9c2(2-1) myotubes. Mol Cell Endocrinol 264:109–117.

580. C Pantos, C Xinaris, I Mourouzis, P Perimenis, E Politi, D Spanou, DV Cokkinos 2008 Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol 59:253–269.

581. C Meischl, HP Buermans, T Hazes, MJ Zuidwijk, RJ Musters, C Boer, A van Lingen, WS Simonides, MA Blankenstein, C Dupuy, WJ Paulus, CE Hack, C Ris-Stalpers, D Roos, HW Niessen 2008 H9c2 cardiomyoblasts produce thyroid hormone. Am J Physiol Cell Physiol 294:C1227–C1233.

582. RM McAllister, VD Grossenburg, MD Delp, MH Laughlin 1998 Effects of hyperthyroidism on vascular contractile and relaxation responses. Am J Physiol Endocrinol Metab 274:E946–E953.

583. A Virdis, R Colucci, M Fornai, A Polini, E Daghini, E Duranti, N Ghisu, D Versari, A Dardano, C Blandizzi, S Taddei, M Del Tacca, F Monzani 2009 Inducible nitric oxide synthase is involved in endothelial dysfunction of mesenteric small arteries from hypothyroid rats. Endocrinology 150:1033–1042.

584. J Deng, R Zhao, Z Zhang, J Wang 2010 Changes in vasoreactivity of rat large- and medium-sized arteries induced by hyperthyroidism. Exp Toxicol Pathol 62:317–322.

585. M Pappas, K Mourouzis, H Karageorgiou, C Tesseromatis, I Mourouzis, G Kostopanagiotou, C Pantos, DV Cokkinos 2009 Thyroid hormone modulates the responsiveness of rat aorta to alpha1-adrenergic stimulation: an effect due to increased activation of beta2-adrenergic signaling. Int Angiol 28:474–478.

586. K Ojamaa, JD Klemperer, I Klein 1996 Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6:505–512.

587. MA Carrillo-Sepulveda, GS Ceravolo, ZB Fortes, MH Carvalho, RC Tostes, FR Laurindo, RC Webb, ML Barreto-Chaves 2010 Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85:560–570.

588. AC Bianco, AL Maia, WS da Silva, MA Christoffolete 2005 Adaptive activation of thyroid hormone and energy expenditure. Biosci Rep 25:191–208.

589. JE Silva 2006 Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86:435–464.

590. L Sestoft 1980 Metabolic aspects of the calorigenic effect of thyroid hormone in mammals. Clin Endocrinol 13:489–506.

591. [Deleted.]

592. R Rabelo, A Schifman, A Rubio, X Sheng, JE Silva 1995 Delineation of thyroid hormone-responsive sequences within a critical enhancer in the rat uncoupling protein gene. Endocrinology 136:1003–1013.

593. C Curcio, AM Lopes, MO Ribeiro, OA Francoso Jr, SD Carvalho, FB Lima, JE Bicudo, AC Bianco 1999 Development of compensatory thermogenesis in response to overfeeding in hypothyroid rats. Endocrinology 140:3438–3443.

594. AN Hollenberg 2008 The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid 18:131–139.

595. RM Lechan, C Fekete 2006 The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res 153:209–235.

596. HC Freake, HL Schwartz, JH Oppenheimer 1989 The regulation of lipogenesis by thyroid hormone and its contribution to thermogenesis. Endocrinology 125:2868–2874.

597. NB Myant, S Witney 1967 The time course of the effect of thyroid hormones upon basal oxygen consumption and plasma concentration of free fatty acid in rats. J Physiol 190:221–228.

598. RL Himsworth 1960 Effect of adrenaline and insulin upon the oxygen consumption of hyperthyroid rats. Nature 185:694.

599. DC Smith, FC Brown 1952 The effect of parrot fish thyroid extract on the respiratory metabolism of the white rat. Biol Bull 102:278–286.

600. JH Oppenheimer, HL Schwartz, JT Lane, MP Thompson 1991 Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis. J Clin Invest 87:125–132.

601. CR Taylor, K Schmidt-Nielsen, JL Raab 1970 Scaling of energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107.

602. MA Christoffolete, CC Linardi, L de Jesus, KN Ebina, SD Carvalho, MO Ribeiro, R Rabelo, C Curcio, L Martins, ET Kimura, AC Bianco 2004 Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes 53:577–584.

603. CM Villicev, FR Freitas, MS Aoki, C Taffarel, TS Scanlan, AS Moriscot, MO Ribeiro, AC Bianco, CH Gouveia 2007 Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol 193:21–29.

604. NF MacLagan, MM Sheahan 1950 The measurement of oxygen consumption in small animals by a closed circuit method. J Endocrinol 6:456–462.

605. [Deleted.]

606. CN Miller, TG Kauffman, PT Cooney, KR Ramseur, LM Brown 2010 Comparison of DEXA and QMR for assessing fat and lean body mass in adult rats. Physiol Behav 103:117–121.

607. MH Tschöp, JR Speakman, JR Arch, J Auwerx, JC Brüning, L Chan, RH Eckel, RV Farese Jr, JE Galgani, C Hambly, MA Herman, TL Horvath, BB Kahn, SC Kozma, E Maratos-Flier, TD Müller, H Münzberg, PT Pfluger, L Plum, ML Reitman, K Rahmouni, GI Shulman, G Thomas, CR Kahn, E Ravussin 2011 A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63.

608. M Sjögren, A Alkemade, J Mittag, K Nordström, A Katz, B Rozell, H Westerblad, A Arner, B Vennström 2007 Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J 26:4535–4545.

609. Y Yang, CJ Gordon 1997 Regulated hypothermia in the hypothyroid rat induced by administration of propylthiouracil. Am J Physiol Regul Integr Comp Physiol 272:R1390–R1395.

610. CJ Gordon, P Becker, B Padnos 2000 Comparison of heat and cold stress to assess thermoregulatory dysfunction in hypothyroid rats. Am J Physiol Regul Integr Comp Physiol 279:R2066–R2071.

611. BG Kasson, R George 1983 Thermoregulation in hyperthyroid rats: mechanism underlying the lack of hypothermic response to morphine in hyperthyroid animals. Life Sci 33:1845–1852.

612. ME Harper, JS Ballantyne, M Leach, MD Brand 1993 Effects of thyroid hormones on oxidative phosphorylation. Biochem Soc Trans 21(Pt 3):785–792.

613. ME Harper, MD Brand 1995 Use of top-down elasticity analysis to identify sites of thyroid hormone-induced thermogenesis. Proc Soc Exp Biol Med 208:228–237.

614. ME Harper, MD Brand 1993 The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. J Biol Chem 268:14850–14860.

615. DA Ferrick, A Neilson, C Beeson 2008 Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13:268–274.

616. M Wu, A Neilson, AL Swift, R Moran, J Tamagnine, D Parslow, S Armistead, K Lemire, J Orrell, J Teich, S Chomicz, DA Ferrick 2007 Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136.

617. C Yuan, JZ Lin, DH Sieglaff, SD Ayers, F Denoto-Reynolds, JD Baxter, P Webb 2012 Identical gene regulation patterns of T3 and selective thyroid hormone receptor modulator GC-1. Endocrinology 153:501–511.

618. OA Sukocheva, DO Carpenter 2006 Anti-apoptotic effects of 3,5,3′-tri-iodothyronine in mouse hepatocytes. J Endocrinol 191:447–458.

619. AM Giudetti, M Leo, MJ Geelen, GV Gnoni 2005 Short-term stimulation of lipogenesis by 3,5-L-diiodothyronine in cultured rat hepatocytes. Endocrinology 146:3959–3966.

620. RP Hafner, GC Brown, MD Brand 1990 Thyroid-hormone control of state-3 respiration in isolated rat liver mitochondria. Biochem J 265:731–734.

621. RP Hafner, CD Nobes, AD McGown, MD Brand 1988 Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem 178:511–518.

622. SD Carvalho, AC Bianco, JE Silva 1996 Effects of hypothyroidism on brown adipose tissue adenylyl cyclase activity. Endocrinology 137:5519–5529.

623. J Pachucki, J Hopkins, R Peeters, H Tu, SD Carvalho, H Kaulbach, ED Abel, FE Wondisford, JS Ingwall, PR Larsen 2001 Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142:13–20.

624. B Kim, SD Carvalho-Bianco, PR Larsen 2004 Thyroid hormone and adrenergic signaling in the heart. Arq Bras Endocrinol Metabol 48:171–175.

625. GC Ring 1942 The importance of the thyroid in maintaining an adequate production of heat during exposure to cold. Am J Physiol 137:582–588.

626. EA Sellers, SS You 1950 Role of the thyroid in metabolic responses to a cold environment. Am J Physiol 163:81–91.

627. MO Ribeiro, FL Lebrun, MA Christoffolete, M Branco, A Crescenzi, SD Carvalho, N Negrao, AC Bianco 2000 Evidence of UCP1-independent regulation of norepinephrine-induced thermogenesis in brown fat. Am J Physiol Endocrinol Metab 279:E314–E322.

628. [Deleted.]

629. M Branco, M Ribeiro, N Negrao, AC Bianco 1999 3,5,3′-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am J Physiol Endocrinol Metab 276:E179–E187.

630. JE Silva 2000 Catecholamines and the sympathoadrenal system in hypothyroidism In: LE Braverman, RD Utiger (eds) Werner & Ingbar’s The Thyroid. A Fundamental and Clinical Text, 8th edition. Lippincott Williams & Wilkins, Philadelphia, pp 820–823.

631. JE Silva 2000 Catecholamines and the sympathoadrenal system in thyrotoxicosis In: LE Braverman, RD Utiger (eds) Werner & Ingbar’s The Thyroid. A Fundamental and Clinical Text, 8th edition. Lippincott Williams & Wilkins, Philadelphia, pp 642–651.

632. L Landsberg 1977 Catecholamines and hyperthyroidism. Clin Endocrinol Metab 6:697–718.

633. JB Young, E Saville, L Landsberg 1982 Effect of thyroid state on norepinephrine (NE) turnover in rat brown adipose tissue (BAT): potential importance of the pituitary. Clin Res 32:407 (Abstract).

634. NJ Rothwell, MJ Stock 1979 A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35.

635. MA Syed, MP Thompson, J Pachucki, LA Burmeister 1999 The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat. Thyroid 9:503–512.

636. [Deleted.]

637. HC Freake, YK Moon 2003 Hormonal and nutritional regulation of lipogenic enzyme mRNA levels in rat primary white and brown adipocytes. J Nutr Sci Vitaminol (Tokyo) 49:40–46.

638. JE Silva 1988 Full expression of uncoupling protein gene requires the concurrence of norepinephrine and triiodothyronine. Mol Endocrinol 2:706–713.

639. [Deleted.]

640. SD Carvalho, N Negrao, AC Bianco 1993 Hormonal regulation of malic enzyme and glucose-6-phosphate dehydrogenase in brown adipose tissue. Am J Physiol Endocrinol Metab 264:E874–E881.

641. PA Antinozzi, L Segall, M Prentki, JD McGarry, CB Newgard 1998 Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. J Biol Chem 273:16146–16154.

642. ED Saggerson, TW McAllister, HS Baht 1988 Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes. Biochem J 251:701–709.

643. ES Bachman, H Dhillon, CY Zhang, S Cinti, AC Bianco, BK Kobilka, BB Lowell 2002 betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297:843–845.

644. YX Wang, CH Lee, S Tiep, RT Yu, J Ham, H Kang, RM Evans 2003 Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170.

645. L Hellström, H Wahrenberg, S Reynisdottir, P Arner 1997 Catecholamine-induced adipocyte lipolysis in human hyperthyroidism. J Clin Endocrinol Metab 82:159–166.

646. F Lonnqvist, H Wahrenberg, L Hellstrom, S Reynisdottir, P Arner 1992 Lipolytic catecholamine resistance due to decreased beta 2-adrenoceptor expression in fat cells. J Clin Invest 90:2175–2186.

647. H Wahrenberg, F Lonnqvist, P Arner 1989 Mechanisms underlying regional differences in lipolysis in human adipose tissue. J Clin Invest 84:458–467.

648. AC Bianco, JD Kieffer, JE Silva 1992 Adenosine 3′,5′-monophosphate and thyroid hormone control of uncoupling protein messenger ribonucleic acid in freshly dispersed brown adipocytes. Endocrinology 130:2625–2633.

649. S Rehnmark, AC Bianco, JD Kieffer, JE Silva 1992 Transcriptional and posttranscriptional mechanisms in uncoupling protein mRNA response to cold. Am J Physiol Endocrinol Metab 262:E58–E67.

650. [Deleted.]

651. H Ying, O Araki, F Furuya, Y Kato, SY Cheng 2007 Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol 27:2359–2371.

652. MJ Obregon 2008 Thyroid hormone and adipocyte differentiation. Thyroid 18:185–195.

653. M Benito, A Porras, E Santos 1993 Establishment of permanent brown adipocyte cell lines achieved by transfection with SV40 large T antigen and ras genes. Exp Cell Res 209:248–254.

654. MI Surks, JH Oppenheimer 1977 Concentration of L-thyroxine and L-triiodothyronine specifically bound to nuclear receptors in rat liver and kidney. Quantitative evidence favoring a major role of T3 in thyroid hormone action. J Clin Invest 60:555–562.

655. FE Carr, DB Jump, JH Oppenheimer 1984 Distribution of thyroid hormone-responsive translated products in rat liver polysome and postribosomal ribonucleoprotein populations. Endocrinology 115:1737–1745.

656. WR Ruegamer, GH Newman, DA Richert, WW Westerfeld 1965 Specificity of the alpha-glycerophosphate dehydrogenase and malic enzyme response to thyroxine. Endocrinology 77:707–715.

657. CN Mariash, FE Kaiser, HL Schwartz, HC Towle, JH Oppenheimer 1980 Synergism of thyroid hormone and high carbohydrate diet in the induction of lipogenic enzymes in the rat. Mechanisms and implications. J Clin Invest 65:1126–1134.

658. HC Towle, CN Mariash, JH Oppenheimer 1980 Changes in the hepatic levels of messenger ribonucleic acid for malic enzyme during induction by thyroid hormone or diet. Biochemistry 19:579–585.

659. CN Mariash, FE Kaiser, JH Oppenheimer 1980 Comparison of the response characteristics of four lipogenic enzymes to 3,5,3′-triiodothyronine administration: evidence for variable degrees of amplification of the nuclear 3,5,3′-triiodothyronine signal. Endocrinology 106:22–27.

660. JA Stakkestad, J Bremer 1983 The outer carnitine palmitoyltransferase and regulation of fatty acid metabolism in rat liver in different thyroid states. Biochim Biophys Acta 750:244–252.

661. JA Stakkestad, J Bremer 1982 The metabolism of fatty acids in hepatocytes isolated from triiodothyronine-treated rats. Biochim Biophys Acta 711:90–100.

662. M Heimberg, JO Olubadewo, HG Wilcox 1985 Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states. Endocr Rev 6:590–607.

663. SF Engelken, RP Eaton 1980 Thyroid hormone-induced dissociation between plasma triglyceride and cholesterol regulation in the rat. Endocrinology 107:208–214.

664. WG Keyes, M Heimberg 1979 Influence of thyroid status on lipid metabolism in the perfused rat liver. J Clin Invest 64:182–190.

665. JJ Apostolopoulos, GJ Howlett, N Fidge 1987 Effects of dietary cholesterol and hypothyroidism on rat apolipoprotein mRNA metabolism. J Lipid Res 28:642–648.

666. PJ Dolphin, SJ Forsyth 1983 Nascent hepatic lipoproteins in hypothyroid rats. J Lipid Res 24:541–551.

667. PJ Dolphin 1981 Serum and hepatic nascent lipoproteins in normal and hypercholesterolemic rats. J Lipid Res 22:971–989.

668. L Johansson, M Rudling, TS Scanlan, T Lundasen, P Webb, J Baxter, B Angelin, P Parini 2005 Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc Natl Acad Sci USA 102:10297–10302.

669. MO Ribeiro 2008 Effects of thyroid hormone analogs on lipid metabolism and thermogenesis. Thyroid 18:197–203.

670. BS Amorim, CB Ueta, BC Freitas, RJ Nassif, CH Gouveia, MA Christoffolete, AS Moriscot, CL Lancelloti, F Llimona, HV Barbeiro, HP de Souza, S Catanozi, M Passarelli, MS Aoki, AC Bianco, MO Ribeiro 2009 A TRbeta-selective agonist confers resistance to diet-induced obesity. J Endocrinol 203:291–299.

671. WS Simonides, C van Hardeveld 2008 Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 18:205–216.

672. WS Simonides, MH Thelen, CG van der Linden, A Muller, C van Hardeveld 2001 Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: implications for thermogenesis. Biosci Rep 21:139–154.

673. MR Jackman, WT Willis 1996 Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol Cell Physiol 270:C673–C678.

674. D Pette, RS Staron 1997 Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223.

675. WS Simonides, C van Hardeveld 1989 The postnatal develpment of sarcoplasmic reticulum Ca2+-transport activity in skeletal muscle of the rat is critically dependent on thyroid hormone. Endocrinology 124:1145–1153.

676. CG van der Linden, WS Simonides, A Muller, WJ van der Laarse, JL Vermeulen, MJ Zuidwijk, AF Moorman, C van Hardeveld 1996 Fiber-specific regulation of Ca(2+)-ATPase isoform expression by thyroid hormone in rat skeletal muscle. Am J Physiol Cell Physiol 271:C1908–C1919.

677. GS Butler-Browne, D Herlicoviez, RG Whalen 1984 Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett 166:71–75.

678. V Mahdavi, S Izumo, B Nadal-Ginard 1987 Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ Res 60:804–814.

679. A d’Albis, C Chanoine, C Janmot, JC Mira, R Couteaux 1990 Muscle-specific response to thyroid hormone of myosin isoform transitions during rat postnatal development. Eur J Biochem 193:155–161.

680. S Izumo, B Nadal-Ginard, V Mahdavi 1986 All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231:597–600.

681. MA Ariano, RB Armstrong, VR Edgerton 1973 Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21:51–55.

682. LC Wang, D Kernell 2001 Fibre type regionalisation in lower hindlimb muscles of rabbit, rat and mouse: a comparative study. J Anat 199:631–643.

683. DJ Baker, RT Hepple 2005 The versatility of the pump-perfused rat hindlimb preparation: examples relating to skeletal muscle function and energy metabolism. Can J Appl Physiol 30:576–590.

684. RM McAllister, RW Ogilvie, RL Terjung 1991 Functional and metabolic consequences of skeletal muscle remodeling in hypothyroidism. Am J Physiol Endocrinol Metab 260:E272–E279.

685. ME Everts, C van Hardeveld, HE Ter Keurs, AA Kassenaar 1983 Force development and metabolism in perfused skeletal muscle of euthyroid and hyperthyroid rats. Horm Metab Res 15:388–393.

686. ME Everts, C van Hardeveld, HE Ter Keurs, AA Kassenaar 1981 Force development and metabolism in skeletal muscle of euthyroid and hypothyroid rats. Acta Endocrinol (Copenh) 97:221–225.

687. B Kraus, D Pette 1997 Quantification of MyoD, myogenin, MRF4 and Id-1 by reverse-transcriptase polymerase chain reaction in rat muscles–effects of hypothyroidism and chronic low-frequency stimulation. Eur J Biochem 247:98–106.

688. BJ Kirschbaum, HB Kucher, A Termin, AM Kelly, D Pette 1990 Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscle. J Biol Chem 265:13974–13980.

689. A Montgomery 1992 The time course of thyroid-hormone-induced changes in the isotonic and isometric properties of rat soleus muscle. Pflugers Arch 421:350–356.

690. ME Everts, WS Simonides, WJ Leijendekker, C van Hardeveld 1987 Fatigability and recovery of rat soleus muscle in hyperthyroidism. Metabolism 36:444–450.

691. C Johansson, J Lannergren, PK Lunde, B Vennstrom, P Thoren, H Westerblad 2000 Isometric force and endurance in soleus muscle of thyroid hormone receptor-alpha(1)- or -beta-deficient mice. Am J Physiol Regul Integr Comp Physiol 278:R598–R603.

692. X Li, SM Hughes, G Salviati, A Teresi, L Larsson 1996 Thyroid hormone effects on contractility and myosin composition of soleus muscle and single fibres from young and old rats. J Physiol 494(Pt 2):555–567.

693. RH Fitts, CJ Brimmer, JP Troup, BR Unsworth 1984 Contractile and fatigue properties of thyrotoxic rat skeletal muscle. Muscle Nerve 7:470–477.

694. CA Ottenheijm, C Hidalgo, K Rost, M Gotthardt, H Granzier 2009 Altered contractility of skeletal muscle in mice deficient in titin’s M-band region. J Mol Biol 393:10–26.

695. KM Norenberg, RA Herb, SL Dodd, SK Powers 1996 The effects of hypothyroidism on single fibers of the rat soleus muscle. Can J Physiol Pharmacol 74:362–367.

696. HW van Hees, CA Ottenheijm, HL Granzier, PN Dekhuijzen, LM Heunks 2010 Heart failure decreases passive tension generation of rat diaphragm fibers. Int J Cardiol 141:275–283.

697. JP Wahrmann, Y Fulla, M Rieu, A Kahn, AT Dinh-Xuan 2002 Altered myosin isoform expression in rat skeletal muscles induced by a changed thyroid state. Acta Physiol Scand 176:233–243.

698. T Yamada, T Mishima, M Sakamoto, M Sugiyama, S Matsunaga, M Wada 2007 Myofibrillar protein oxidation and contractile dysfunction in hyperthyroid rat diaphragm. J Appl Physiol 102:1850–1855.

699. O Agbulut, P Noirez, F Beaumont, G Butler-Browne 2003 Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95:399–406.

700. EH Miyabara, MS Aoki, AG Soares, RM Saltao, CM Vilicev, M Passarelli, TS Scanlan, CH Gouveia, AS Moriscot 2005 Thyroid hormone receptor-beta-selective agonist GC-24 spares skeletal muscle type I to II fiber shift. Cell Tissue Res 321:233–241.

701. T Yamada, S Inashima, S Matsunaga, I Nara, H Kajihara, M Wada 2004 Different time course of changes in sarcoplasmic reticulum and myosin isoforms in rat soleus muscle at early stage of hyperthyroidism. Acta Physiol Scand 180:79–87.

702. F Yu, S Gothe, L Wikstrom, D Forrest, B Vennstrom, L Larsson 2000 Effects of thyroid hormone receptor gene disruption on myosin isoform expression in mouse skeletal muscles. Am J Physiol Regul Integr Comp Physiol 278:R1545–R1554.

703. RA dos Santos, G Giannocco, MT Nunes 2001 Thyroid hormone stimulates myoglobin expression in soleus and extensorum digitalis longus muscles of rats: concomitant alterations in the activities of Krebs cycle oxidative enzymes. Thyroid 11:545–550.

704. I Irrcher, PJ Adhihetty, T Sheehan, AM Joseph, DA Hood 2003 PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 284:C1669–C1677.

705. WS Simonides, C van Hardeveld 1990 An assay for sarcoplasmic reticulum Ca2(+)-ATPase activity in muscle homogenates. Anal Biochem 191:321–331.

706. E Silvestri, M Moreno, A Lombardi, M Ragni, P de Lange, SE Alexson, A Lanni, F Goglia 2005 Thyroid-hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria. FEBS Lett 579:1639–1645.

707. P Venditti, A Puca, S Di Meo 2003 Effect of thyroid state on rate and sites of H2O2 production in rat skeletal muscle mitochondria. Arch Biochem Biophys 411:121–128.

708. S Schiaffino, L Gorza, S Sartore, L Saggin, S Ausoni, M Vianello, K Gundersen, T Lomo 1989 Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10:197–205.

709. V Smerdu, T Soukup 2008 Demonstration of myosin heavy chain isoforms in rat and humans: the specificity of seven available monoclonal antibodies used in immunohistochemical and immunoblotting methods. Eur J Histochem 52:179–190.

710. D Bloemberg, J Quadrilatero 2012 Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7:e35273.

711. MT Nunes, AC Bianco, A Migala, B Agostini, W Hasselbach 1985 Thyroxine induced transformation in sarcoplasmic reticulum of rabbit soleus and psoas muscles. Z Naturforsch [C] 40:726–734.

712. K Naumann, D Pette 1994 Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55:203–211.

713. R Grozovsky, S Ribich, ML Rosene, MA Mulcahey, SA Huang, ME Patti, AC Bianco, BW Kim 2009 Type 2 deiodinase expression is induced by peroxisomal proliferator-activated receptor-gamma agonists in skeletal myocytes. Endocrinology 150:1976–1983.

714. TA Rando, HM Blau 1994 Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287.

715. A Muller, MH Thelen, MJ Zuidwijk, WS Simonides, C van Hardeveld 1996 Expression of MyoD in cultured primary myotubes is dependent on contractile activity: correlation with phenotype-specific expression of a sarcoplasmic reticulum Ca(2+)-ATPase isoform. Biochem Biophys Res Commun 229:198–204.

716. A Marsili, D Tang, JW Harney, P Singh, AM Zavacki, M Dentice, D Salvatore, PR Larsen 2011 Type II iodothyronine deiodinase provides intracellular 3,5,3′-triiodothyronine to normal and regenerating mouse skeletal muscle. Am J Physiol Endocrinol Metab 301:E818–E824.

717. KR Sultan, B Henkel, M Terlou, HP Haagsman 2006 Quantification of hormone-induced atrophy of large myotubes from C2C12 and L6 cells: atrophy-inducible and atrophy-resistant C2C12 myotubes. Am J Physiol Cell Physiol 290:C650–C659.

718. MH Thelen, WS Simonides, C van Hardeveld 1997 Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J 321(Pt 3):845–848.

719. I Nagase, S Yoshida, X Canas, Y Irie, K Kimura, T Yoshida, M Saito 1999 Up-regulation of uncoupling protein 3 by thyroid hormone, peroxisome proliferator-activated receptor ligands and 9-cis retinoic acid in L6 myotubes. FEBS Lett 461:319–322.

720. MH Thelen, WS Simonides, A Muller, C van Hardeveld 1998 Cross-talk between transcriptional regulation by thyroid hormone and myogenin: new aspects of the Ca2+-dependent expression of the fast-type sarcoplasmic reticulum Ca2+-ATPase. Biochem J 329(Pt 1):131–136.

721. A Muller, C van Hardeveld, WS Simonides, J van Rijn 1991 The elevation of sarcoplasmic reticulum Ca2(+)-ATPase levels by thyroid hormone in the L6 muscle cell line is potentiated by insulin-like growth factor-1. Biochem J 275:35–40.

722. [Deleted.]

723. MK Connor, I Irrcher, DA Hood 2001 Contractile activity-induced transcriptional activation of cytochrome C involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J Biol Chem 276:15898–15904.

724. JH Bassett, GR Williams 2008 Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 43:418–426.

725. JH Bassett, A Boyde, PG Howell, RH Bassett, TM Galliford, M Archanco, H Evans, MA Lawson, P Croucher, DL St Germain, VA Galton, GR Williams 2010 Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci USA 107:7604–7609.

726. JH Bassett, K Nordstrom, A Boyde, PG Howell, S Kelly, B Vennstrom, GR Williams 2007 Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 21:1893–1904.

727. JH Bassett, PJ O’Shea, S Sriskantharajah, B Rabier, A Boyde, PG Howell, RE Weiss, JP Roux, L Malaval, P Clement-Lacroix, J Samarut, O Chassande, GR Williams 2007 Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol 21:1095–1107.

728. JH Bassett, A van der Spek, A Gogakos, GR Williams 2012 Quantitative X-ray imaging of rodent bone by Faxitron. Methods Mol Biol 816:499–506.

729. JH Bassett, AJ Williams, E Murphy, A Boyde, PG Howell, R Swinhoe, M Archanco, F Flamant, J Samarut, S Costagliola, G Vassart, RE Weiss, S Refetoff, GR Williams 2008 A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol Endocrinol 22:501–512.

730. PJ O’Shea, JH Bassett, S Sriskantharajah, H Ying, SY Cheng, GR Williams 2005 Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta. Mol Endocrinol 19:3045–3059.

731. PJ O’Shea, CB Harvey, H Suzuki, M Kaneshige, K Kaneshige, SY Cheng, GR Williams 2003 A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 17:1410–1424.

732. CT Esapa, TA Hough, S Testori, RA Head, EA Crane, CP Chan, H Evans, JH Bassett, P Tylzanowski, EG McNally, AJ Carr, A Boyde, PG Howell, A Clark, GR Williams, MA Brown, PI Croucher, MA Nesbit, SD Brown, RD Cox, MT Cheeseman, RV Thakker 2012 A mouse model for spondyloepiphyseal dysplasia congenita with secondary osteoarthritis due to a Col2a1 mutation. J Bone Miner Res 27:413–428.

733. A Karunaratne, C Esapa, J Hiller, A Boyde, R Head, J Bassett, N Terrill, G Williams, M Brown, P Croucher, SD Brown, RD Cox, AH Barber, RV Thakker, HS Gupta 2012 Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res 27:876–890.

734. M Vanleene, Z Saldanha, KL Cloyd, G Jell, G Bou-Gharios, JH Bassett, GR Williams, NM Fisk, ML Oyen, MM Stevens, PV Guillot, SJ Shefelbine 2011 Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood 117:1053–1060.

735. H Peltoketo, L Strauss, R Karjalainen, M Zhang, GW Stamp, DL Segaloff, M Poutanen, IT Huhtaniemi 2010 Female mice expressing constitutively active mutants of FSH receptor present with a phenotype of premature follicle depletion and estrogen excess. Endocrinology 151:1872–1883.

736. AM Parfitt, MK Drezner, FH Glorieux, JA Kanis, H Malluche, PJ Meunier, SM Ott, RR Recker 1987 Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610.

737. M Doube, EC Firth, A Boyde 2007 Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. Osteoarthritis Cartilage 15:1283–1292.

738. JC Barnard, AJ Williams, B Rabier, O Chassande, J Samarut, SY Cheng, JH Bassett, GR Williams 2005 Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. Endocrinology 146:5568–5580.

739. DA Stevens, CB Harvey, AJ Scott, PJ O’Shea, JC Barnard, AJ Williams, G Brady, J Samarut, O Chassande, GR Williams 2003 Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol 17:1751–1766.

740. AJ Williams, H Robson, MH Kester, JP van Leeuwen, SM Shalet, TJ Visser, GR Williams 2008 Iodothyronine deiodinase enzyme activities in bone. Bone 43:126–134.

741. B Rabier, AJ Williams, F Mallein-Gerin, GR Williams, O Chassande 2006 Thyroid hormone-stimulated differentiation of primary rib chondrocytes in vitro requires thyroid hormone receptor beta. J Endocrinol 191:221–228.

742. H Robson, T Siebler, DA Stevens, SM Shalet, GR Williams 2000 Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141:3887–3897.

743. PJ O’Shea, CJ Guigon, GR Williams, SY Cheng 2007 Regulation of fibroblast growth factor receptor-1 by thyroid hormone: identification of a thyroid hormone response element in the murine Fgfr1 promoter. Endocrinology 148:5966–5976.

744. [Deleted.]

745. RG Cheron, MM Kaplan, PR Larsen 1979 Physiological and pharmacological influences on thyroxine to 3,5,3′- triiodothyronine conversion and nuclear 3,5,3′-triiodothyronine binding in rat anterior pituitary. J Clin Invest 64:1402–1414.

746. M DeJong, R Docter, H Van der Hoek, E Krenning, D van der Heide, C Quero, P Plaisier, R Vos, G Hennemann 1994 Different effects of amiodarone on transport of T4 and T3 into the perfused liver. Am J Physiol Endocrinol Metab 266:E44–E49.

747. FW Wassen, EP Moerings, H Van Toor, EA De Vrey, G Hennemann, ME Everts 1996 Effects of interleukin-1 beta on thyrotropin secretion and thyroid hormone uptake in cultured rat anterior pituitary cells. Endocrinology 137:1591–1598.

748. FW Wassen, EP Moerings, H van Toor, G Hennemann, ME Everts 2000 Thyroid hormone uptake in cultured rat anterior pituitary cells: effects of energy status and bilirubin. J Endocrinol 165:599–606.

749. ME Everts, TJ Visser, E.P.C.M. Moerings, R Docter, H van Toor, A.M.P. Tempelaars, M DeJong, EP Krenning, G Hennemann 1994 Uptake of triiodothyroacetic acid and its effect on thyrotropin secretion in cultured anterior pituitary cells. Endocrinology 135:2700–2707.

750. K Sato, DC Han, Y Fujii, T Tsushima, K Shizume 1987 Thyroid hormone stimulates alkaline phosphatase activity in cultured rat osteoblastic cells (ROS 17/2.8) through 3,5,3′-triiodo-L-thyronine nuclear receptors. Endocrinology 120:1873–1881.

751. Y Sato, R Nakamura, M Satoh, K Fujishita, S Mori, S Ishida, T Yamaguchi, K Inoue, T Nagao, Y Ohno 2005 Thyroid hormone targets matrix Gla protein gene associated with vascular smooth muscle calcification. Circ Res 97:550–557.

752. Y Liu, L Fu, DG Chen, SS Deeb 2007 Identification of novel retinal target genes of thyroid hormone in the human WERI cells by expression microarray analysis. Vision Res 47:2314–2326.