Consensus Statement of the European Group on Graves’ Orbitopathy (EUGOGO) on Management of Graves’ Orbitopathy*

Luigi Bartalena,1 Lelio Baldeschi,2 Alison J. Dickinson,3 Anja Eckstein,4 Pat Kendall-Taylor,5 Claudio Marcocci,6 Maarten P. Moorts,7 Petros Perros,8 Kostas Boboridis,9 Antonella Boschi,10 Nicola Currò,11 Chantal Daumerie,12 George J. Kahaly,13 Gerasimos Krassas,14 Carol M. Lane,15 John H. Lazarus,16 Michele Marinò,6 Marco Nardi,17 Christopher Neoh,3 Jacques Orgiazzi,18 Simon Pearce,19 Aldo Pinchera,6 Susanne Pitz,20 Mario Salvi,21 Paolo Sivelli,22 Matthias Stahl,23 Georg von Arx,24 and Wilmar M. Wiersinga25

Introduction

Graves’ orbitopathy (GO) constitutes a major clinical and therapeutic challenge (1,2). GO is an autoimmune disorder representing the commonest and most important extrathyroidal manifestation of Graves’ disease, but it may occur in patients without current or prior hyperthyroidism (euthyroid or ophthalmic Graves’ disease) or in patients who are hypothyroid due to chronic autoimmune (Hashimoto’s) thyroiditis (3,4). Although the pathogenesis of GO (5–9) is beyond the scope of this document, attention is drawn to the link between the orbit and thyroid, which has important clinical and therapeutic implications. Optimal management of GO requires a coordinated approach addressing the thyroid dysfunction and the orbitopathy (10,11).

GO is often mild and self-limiting, and probably declining in frequency, with only 3–5% of cases posing a threat to eyesight (3,4). The onset and progression of GO are influenced by factors that are potentially controllable such as cigarette smoking, thyroid dysfunction, and choice of treatment modalities for hyperthyroidism (12,13).

Suboptimal management of patients with GO appears to be widespread (2). The objectives of this document are to provide practical information for managing patients with GO, for both nonspecialists and those with special interest and expertise in this condition, and thus to improve the outcomes of patients with GO. It is hoped that the document will also be useful to specialist nurses, orthoptists, and those involved in managerial roles and that it will provide a focus for audit and research. Randomized clinical trials (RCTs) are infrequent.

1Department of Clinical Medicine, University of Insubria, Varese, Italy.
2Department of Ophthalmology, Academic Medical Center, Amsterdam, the Netherlands.
3Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
4Department of Ophthalmology, University of Essen, Essen, Germany.
5Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
6Department of Endocrinology, University of Pisa, Pisa, Italy.
7Orbital Center, Department of Ophthalmology, Academic Medical Center, Amsterdam, the Netherlands.
8Department of Endocrinology, Freeman Hospital, Newcastle upon Tyne, United Kingdom.
9University Department of Ophthalmology, Ahepa Hospital, Thessaloniki, Greece.
10Department of Ophthalmology, Université Catholique de Louvain, Cliniques Universitaires, Brussels, Belgium.
11Department of Ophthalmology, University of Milan, Milan, Italy.
12Université Catholique de Louvain, Cliniques Universitaires, Brussels, Belgium.
13Department of Medicine I, Gutenberg University Hospital, Mainz, Germany.
14Department of Endocrinology, Panagia General Hospital, Thessaloniki, Greece.
15Cardiff Eye Unit, University Hospital of Wales, Heath Park, Cardiff, United Kingdom.
16School of Medicine, Cardiff University, Llandough Hospital, Cardiff, United Kingdom.
17Department of Neurosciences, Section of Ophthalmology, University of Pisa, Pisa, Italy.
18Department of Endocrinology, Centre Hospitalier Lyon-Sud, Lyon, France.
19School of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
20Department of Ophthalmology, Johannes Gutenberg-University, Mainz, Germany.
21Department of Medical Sciences, University of Milan, Milan, Italy.
22Department of Ophthalmology, University of Insubria, Varese, Italy.
23Department of Endocrinology, Solothurner Spitaler, Switzerland.
24Interdisziplinaires Zentrum fur Endokrine Orbitopathie, Olten, Switzerland.
25Department of Endocrinology, Academic Medical Center, Amsterdam, the Netherlands.
*This paper is also being published in the March 2008 issue of the journal, European Journal of Endocrinology, vol. 158, no. 3.
in this field. The document therefore should be considered as a consensus statement rather than a guideline.

Methods

EUGOGO represents a multidisciplinary consortium of clinicians from European centers, who share a commitment to improving the management of patients with GO (www.eugogo.org). A Working Group was formed and met in November 2006. Subsequent discussions took place electronically and at a further meeting in May 2007. After revision the document was posted on the European Thyroid Association (ETA) and the European Society of Ophthalmic Reconstructive and Plastic Surgeons (ESORPS) websites for wider consultation. The document was presented at the ETA annual meeting in Leipzig, Germany, in September 2007. Relevant articles were identified by searching MEDLINE using the terms Graves’ ophthalmopathy or orbitopathy, thyroid-associated ophthalmopathy or orbitopathy, thyroid-eye disease. The definition of Types of Evidence and the Grading of Recommendations used follows that of the Agency for Health Care Policy and Research (AHCPR), now Agency for Healthcare Research and Quality (AHRQ) (www.ahrq.gov), as set out in Table 1.

Recommendations

Referral to combined thyroid-eye clinics and initial assessment (Box 1)

Should all patients with GO be referred to combined thyroid-eye clinics (10)?

- All patients with GO, except for the mildest cases, should either be managed by a physician with particular expertise in managing GO or should better be referred to a combined thyroid-eye clinic for further assessment and management.
- Many patients with GO never reach combined thyroid-eye clinics or are referred too late to benefit from treatments (2).

Management issues of GO that should be addressed by both nonspecialists and specialists

Smoking and GO (Box 2)

Is smoking related to the occurrence, severity, and progression of GO?

- There is strong and consistent association between smoking and GO (12–24).
- Smokers suffer more severe GO (14,15,17) than non-smokers.
- A dose–response relationship between numbers of cigarettes smoked per day and probability of developing GO has been demonstrated (21).
- Smoking increases the likelihood of progression of GO after radioiodine therapy for hyperthyroidism (25–27).
- Some evidence suggests that smoking either delays or worsens the outcomes of treatments for GO (28,29).
- There is some retrospective evidence that quitting smoking is associated with a better outcome of GO (19,21).

Management of hyperthyroidism in patients with GO (Box 3)

Is correction of thyroid dysfunction important for GO?

- Patients with uncontrolled thyroid function (both hyper- and hypothyroidism) are more likely to have severe GO than patients with euthyroidism (30–32).

Is there a relationship between modality of treatment for hyperthyroidism and the course of GO?

- Antithyroid drug therapy (27,30,33) and thyroidectomy do not affect the course of GO (26,34–36), although the role of the latter requires further investigation.

Table 1. Types of Evidence and the Grading of Recommendations

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Evidence obtained from meta-analysis of randomized controlled trials.</td>
</tr>
<tr>
<td>Ib</td>
<td>Evidence obtained from at least one randomized controlled trial.</td>
</tr>
<tr>
<td>Iia</td>
<td>Evidence obtained from at least one well-designed controlled study without randomization.</td>
</tr>
<tr>
<td>Iib</td>
<td>Evidence obtained from at least one other type of well-designed quasi-experimental study.</td>
</tr>
<tr>
<td>III</td>
<td>Evidence obtained from well-designed nonexperimental descriptive studies, such as comparative studies, correlation studies, and case–control studies.</td>
</tr>
<tr>
<td>IV</td>
<td>Evidence obtained from expert committee reports or opinions and/or clinical experience of respected authorities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Evidence levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ia, Ib</td>
<td>Requires at least one randomized controlled trial as part of the body of literature of overall good quality and consistency addressing the specific recommendation.</td>
</tr>
<tr>
<td>B</td>
<td>Iia, Iib, III</td>
<td>Requires availability of well-conducted clinical studies but no randomized clinical trials on the topic of recommendation.</td>
</tr>
<tr>
<td>C</td>
<td>IV</td>
<td>Requires evidence from expert committee reports or opinions and/or clinical experience of respected authorities. Indicates absence of directly applicable studies of good quality</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>Good practice point recommended by consensus development group</td>
</tr>
</tbody>
</table>

- This practice is undesirable and may result in a suboptimal outcome and sometimes loss of vision.
No particular antithyroid drug or regimen, nor any type of thyroidectomy (subtotal or total) has been demonstrated to have any advantages in terms of outcome of GO.

The few available RCTs on the effects of radioiodine therapy on GO show that a definite proportion of patients (~15%) develop new eye disease or experiences progression of pre-existing GO within 6 months after radioiodine (25–27). In approximately 5% of patients worsening persisted at 1 year and required additional treatment (25). This risk is almost eliminated by giving a short course (about 3 months) of oral glucocorticoids.

Box 2 Smoking and GO

All patients with Graves’ disease should be informed of the risks of smoking for GO (IV, C) emphasising the detrimental effects of smoking on:

- development of GO (IIb, B)
- deterioration of pre-existing GO (IIb, B)
- effectiveness of treatments for GO (IIb, B)
- progression of GO after radioiodine treatment (Ib, A)

If advice alone is ineffective, referral to smoking cessation clinics, or other smoking cessation strategies should be considered (IV, C).
(GCs) after radioiodine (25, 27), and avoiding post-treatment hypothyroidism (32). Shorter administration of oral GCs (1–2 months) is probably equally protective, but different dose regimens have not systematically been investigated.

- The risk of exacerbation of pre-existing GO is negligible in patients with inactive eye disease, as long as post-radioiodine hypothyroidism is avoided (37,38), and other risk factors for GO progression, including smoking (28) and high (> 7.5 IU/L) thyrotropin-receptor antibody levels (39), are absent (40).

Other simple measures that may alleviate symptoms (Box 4)

- Are there worthwhile simple measures that can relieve some of the symptoms of GO?
- Symptoms of corneal exposure (grittiness, watering, and photophobia) often accompany active GO and may persist if lid retraction is severe. Such patients benefit from lubricants (3,4).
- Nocturnal ointment is of great benefit for incomplete eyelid closure provided the cornea is protected (3,4). Otherwise, urgent intervention will be required.
- Prisms may control intermittent or constant diplopia, sleeping with head up may reduce morning eyelid swelling. Diuretics are rarely useful.
- Botulinum toxin injection can reduce upper lid retraction (41), but this procedure should be carried out in specialist centers.

Management issues of GO that should be addressed in specialists centers

Grading severity and activity of GO (Box 5 and Box 6)

What protocol should be followed for detailed assessment of patients with GO in specialist centers?

- Making treatment decisions for patients with GO requires detailed assessment of the eyes, understanding of the natural history of the disease, insight into the impact of GO on the individual patient (42), and appreciation of the efficacy and side effects of therapies.

Is it helpful to grade the severity of GO?

- Grading the severity of GO is fraught with difficulties, however classifying patients into broad categories facilitates decision-making (Fig. 1).
- Careful assessment of the impact of GO on quality of life (QoL) by disease-specific questionnaire (GO-QoL) (42) is fundamental in deciding whether treatments used for moderate to severe GO (see below) are justified in patients with mild GO.

Is it helpful to grade the activity of GO?

- Grading the activity of GO is also fraught with difficulties, however classifying patients into active/inactive GO categories is frequently possible and greatly facilitates decision-making (Fig. 1). Patients with a Clinical Activity Score (CAS) $\geq 3/7$ should be considered as having active GO (43,44).

Box 3 Management of hyperthyroidism and GO

Euthyroidism should be restored promptly and maintained stably in all patients with GO (III, B).

Frequent monitoring of thyroid status (every 4-6 weeks) is imperative in the initial phases of treatment when changes in thyroid status are expected (IV, C).

Patients with active GO given radioiodine should be offered prophylactic steroid cover (commencing with 0.3-0.5 mg of prednisone/kg bw per day orally 1-3 days after radioiodine and tapering the dose until withdrawal about 3 months later) (Ib, A). Shorter periods of glucocorticoid therapy (1-2 months) may be equally protective (IV, C).

Patients with inactive GO can safely receive radioiodine without steroid cover, as long as hypothyroidism is avoided (IIb, B), particularly if other risk factors for GO progression, such as smoking, are absent (IV, C).

Box 4 Simple measures that may alleviate symptoms in GO

Lubricant eye drops during the day and/or lubricant ointments at night-time are recommended for all patients with GO who have symptoms of corneal exposure (III, B).

Patients with symptomatic diplopia should be given prisms if appropriate (IV, C).

Botulinum toxin injection may be considered for upper lid retraction in centres who have experience and expertise in this technique (IV, C).
Management of sight-threatening GO
(Box 7 and Box 8)

How can patients with sight-threatening GO be identified?

- Sight-threatening GO usually occurs in the context of dysthyroid optic neuropathy (DON).
- The risk of corneal breakdown and perforation is significant when lagophthalmos is associated with poor Bell’s phenomenon (45).
- Sight can also be threatened in patients with GO in the following rare circumstances: eyeball subluxation, severe forms of frozen globe in the presence of lagophthalmos, choroidal folds, and postural visual obscuration (46).

Box 5 Activity and severity assessments in GO

EUGOGO recommends the following assessments for patients with GO in specialist centres (IV, C), as previously reported by Wiersinga et al. (1):

(a) Activity measures based on the classical features of inflammation: clinical activity score (CAS) is the sum of all items present (43, 44)
 - Spontaneous retrobulbar pain
 - Pain on attempted up- or down gaze
 - Redness of the eyelids
 - Redness of the conjunctiva
 - Swelling of the eyelids
 - Inflammation of the caruncle and/or plica
 - Conjunctival oedema
 - A CAS $\geq 3/7$ indicates active GO

(b) Severity measures
 - Lid aperture (distance between the lid margins in mm with the patient looking in the primary position, sitting relaxed and with distant fixation)
 - Swelling of the eyelids (absent/equivocal, moderate, severe)1
 - Redness of the eyelids (absent/present)1
 - Redness of the conjunctivae (absent/present)1
 - Conjunctival oedema (absent, present)1
 - Inflammation of the caruncle or plica (absent, present)1
 - Exophthalmos (measured in mm using the same Hertel exophthalmometer and same intercanthal distance for an individual patient)
 - Subjective diplopia score (0 = no diplopia; 1 = intermittent, i.e. diplopia in primary position of gaze, when tired or when first awakening; 2 = inconstant, i.e. diplopia at extremes of gaze; 3 = constant, i.e. continuous diplopia in primary or reading position)
 - Eye muscle involvement (ductions in degrees)1
 - Corneal involvement (absent/punctate keratopathy/ulcer)
 - Optic nerve involvement (best corrected visual acuity, colour vision, optic disc, relative afferent pupillary defect (absent/present), plus visual fields if optic nerve compression is suspected

1www.eugogo.org

Box 6 Severity classifications in GO

EUGOGO recommends the following classification of patients with GO (IV, C):

1. **Sight-threatening GO**: patients with dysthyroid optic neuropathy (DON) and/or corneal breakdown. This category warrants immediate intervention.
2. **Moderate to severe GO**: patients without sight-threatening GO whose eye disease has sufficient impact on daily life to justify the risks of immunosuppression (if active) or surgical intervention (if inactive). Patients with moderate to severe GO usually have any one or more of the following: lid retraction ≥ 2 mm, moderate or severe soft tissue involvement, exophthalmos ≥ 3 mm above normal for race and gender, inconstant or constant diplopia.
3. **Mild GO**: patients whose features of GO have only a minor impact on daily life insufficient to justify immunosuppressive or surgical treatment. They usually only have one or more of the following: minor lid retraction (<2 mm), mild soft tissue involvement, exophthalmos <3 mm above normal for race and gender, transient or no diplopia, corneal exposure responsive to lubricants.
The above clinical entities require recognition and prompt medical attention (1). Box 1 can be used to identify patients with sight-threatening GO.

What is the treatment of choice for dysthyroid optic neuropathy (DON)?

- DON can be treated by systemic glucocorticoids (GCs), surgery, or both.
- Orbital radiotherapy is not recommended in the case of DON unless as an adjunct to proven therapies.
- High-dose intravenous (IV) GCs administered in pulses are more efficacious and associated with fewer adverse effects than oral or retrobulbar steroids (3,4,47–51) (Table 2).
- Improvement of optic nerve function can be expected after high-dose IV GCs within 1–2 weeks (52).
- Relapse of DON may occur when systemic GCs are withdrawn too quickly (see Management of Moderate to Severe GO) (3,4).
- Decompression surgery can lead to rapid resolution of DON with an acceptable adverse effect profile. However, GCs and squint surgery are frequently required, and occasionally further decompression surgery is necessary (53). Immediate decompression surgery as first

Box 7 Glucocorticoids and orbital decompression in DON

Glucocorticoids (GCs) and surgical decompression of the orbit are the only treatments proven to be effective in patients with DON (III, B).

High-dose iv GCs is the preferred first-line treatment for DON (III, B).

If the response to iv GCs is absent or poor after 1-2 weeks, or the dose/duration of steroid required induces significant side effects, prompt orbital decompression should be carried out (IV, C).

Orbital decompression should be offered promptly to patients with DON or corneal breakdown who cannot tolerate GCs (III, B).

Both iv GC therapy and orbital decompression surgery should only be undertaken in centres with appropriate expertise (IV, C).
choice therapy does not appear to result in a better outcome compared to IV GCs as first choice, nor does it obviate the need for subsequent GC therapy (54).

What is the treatment of choice for sight-threatening corneal breakdown?

- In severe, sight-threatening corneal breakdown when the cornea cannot be protected by the closed eyelid, hourly topical lubricants are indicated, however, this intervention alone may be insufficient to prevent ulceration, thinning, and perforation. In such cases specific measures to improve eyelid closure are required.
- A moisture chamber or temporary eye closure by blepharoraphy or tarsorraphy, or botulinum toxin injections can help temporize until corneal healing occurs (55).
- The effect of GCs on severe corneal exposure has never been specifically addressed.
- Most of the studies on the effects of orbital decompression report a reduction in symptoms associated with exposure keratopathy; rarely severe corneal ulcers may be refractory to decompression surgery if lagophthalmos persists (56).

Management of moderate to severe GO (Box 9 and Box 10)

Does every patient with moderate to severe GO require treatment?

- Many patients in this category should be considered for treatment, with the exception of patients who are asymptomatic or unwilling to have treatment.
- Patients with moderate to severe and active (CAS ≥ 3/7) GO should be treated with immunosuppressive treatment modalities, while those with inactive GO may benefit from rehabilitative surgery (see below) (Fig. 1).

What are the nonsurgical treatments of choice for moderate to severe GO?

- Glucocorticoids. GC therapy has been used in the management of GO through oral, local (retrobulbar or subconjunctival) or IV routes (35). Oral GC therapy (starting dose, 80–100 mg prednisone [or about 1 mg/kg bw] or equivalent) requires high doses for prolonged periods of time. No randomized, placebo-controlled studies have been performed. Open trials or randomized studies in which oral GC were compared with other treatments (47,48,50,57–62) show a favorable response in about 33–63% of patients, particularly for soft tissue changes, recent onset eye muscle involvement, and DON. The eye disease frequently flares up on tapering or withdrawing GCs. Side effects are frequent. Prolonged oral GC treatment is associated with a risk of osteoporosis (49), which may be decreased using bisphosphonates or other antiresorptive drugs (63,64). Retrobulbar or subconjunctival GC therapy is less effective than oral GCs (65). IV GC pulse therapy is more

| Table 2. Randomized Clinical Trials of Intravenous Methylprednisolone versus Oral Prednisone |
|-----------------------------------|---------------------------------|----------------|----------------|
| **Group A** | **Group B** | **Response rate** | **P value** | **Reference** |
| Intravenous methylprednisolonea + radiotherapyb (n = 41) | Oral prednisonec + radiotherapyb (n = 41) | 88% | 63% | < 0.02 | Maroccoci et al. (47) |
| Intravenous methylprednisolone (n = 35) | Oral prednisonec (n = 35) | 77% | 51% | < 0.01 | Kahaly et al. (50) |

a15 mg/kg for four cycles, then 7.5 mg/kg for four cycles; each cycle consisted of two infusions on alternate days at 2-week intervals.
b20 Gy in 10 daily doses of 2 Gy over 2 weeks.
c100 mg daily for 1 week, then weekly reduction until 25 mg daily, then tapering by 5 mg every 2 weeks.
d500 mg once weekly for 6 weeks, 250 mg once weekly for 6 weeks, total treatment period: 12 weeks.
e100 mg daily starting dose, tapering by 10 mg per week, total treatment period: 12 weeks.
Box 9 Treatment of moderate to severe GO that is ACTIVE

The treatment of choice for moderate to severe and active (CAS ≥ 3/7) GO is pulses of iv glucocorticoids (GCs) (Ib, A). This treatment should be undertaken in centres with appropriate expertise (IV, C).

The total cumulative dose of methylprednisolone should not exceed 8 g in one course of therapy (III, B).

Patients being treated with high dose iv GC should be first screened for liver dysfunction, hypertension, history of peptic ulcer, diabetes, urine infections and glaucoma, and then monitored for side-effects (IV, C).

Bisphosphonates are recommended when long-term (>3 months) oral GC therapy (average daily dose >5 mg prednisone or equivalent) is used (Ia, A). It is reasonable to suggest the use of antiresorptive agents also when GCs are used iv (IV, C).

Orbital irradiation (OR) should be considered in patients with active disease who have diplopia or restricted motility (Ib, A). OR with lower cumulative doses (10 Gy) may be as effective as and better tolerated than OR with higher doses (20 Gy) (Ib, A). Doses >20 Gy are not recommended (IV, C).

Caution should be exercised before administering OR to patients younger than 35 years; OR must be avoided in patients with diabetic retinopathy or severe hypertension (III, B).

The combination of oral GCs with OR is more effective than either treatment alone (Ib, A), but randomized clinical trials indicating that combination of iv GCs with OR is better than iv GCs alone are lacking (IV, C).

recent RCTs have shown that OR is more effective than sham irradiation in improving diplopia and eye muscle motility (73,74). Another RCT has questioned the efficacy of OR (75). OR is usually well tolerated, but may cause transient exacerbation of ocular symptoms, which is preventable with concomitant GC administration (3,66). Data on long-term safety are reassuring (76–78), but theoretical concerns about carcinogenesis remain for younger patients, particularly those under the age of 35 years (70,76–78). Although cataracts can occur earlier after OR than naturally, they are easily treated by surgery. Retinal microvascular abnormalities have been detected in a minority of patients (79), mostly in those with concomitant severe hypertension or diabetic retinopathy, and these two comorbidities are considered absolute contraindications to OR (80,81). It is possible that diabetes, even in the absence of retinopathy, represents a risk factor for the development of retinal changes after OR (78), but the evidence is less clear (77). Thus, diabetes without retinopathy may be regarded as a relative contraindication to OR (see also Box 12).

Box 10 Timing and order of surgery for GO

The timing and order of surgical interventions should be carefully planned (IV, C).

Surgical management should proceed in the following sequence: orbital decompression, then squint surgery, then lid lengthening with or followed by blepharoplasty/browplasty, since side effects of the preceding step can interfere with the step that follows (III, B).

Rehabilitative surgery should only be performed in patients who have had inactive GO for at least 6 months (III, B).

Rehabilitative surgery should only be undertaken in centres with appropriate expertise (IV, C).
Combination of GC (either orally or locally) with OR is more effective than either treatment alone (57,82). It is unclear whether IV GCs with OR are more efficacious than IV GCs alone.

Treatments of marginal or unproven value include somatostatin analogs (83–86), azathioprine (87), ciamexone (88), and IV immunoglobulins (62,89). Two studies have shown the superiority of the combination of oral GCs and cyclosporine than either treatment alone (58,59). The potential usefulness of immunomodulatory agents, such as rituximab (90) or etanercept (91), has been suggested by open studies, but no RCTs have been carried out as yet.

Do nonsurgical treatments reduce the subsequent need for rehabilitative surgery or do they adversely interfere with it?

- No RCTs have been performed to investigate specifically whether nonsurgical treatments reduce the subsequent need for rehabilitative surgery, so this important question remains unanswered.
- The theoretical concern that radiation-induced fibrosis may reduce orbital compliance and hence compromise subsequent therapies, is not supported by the available evidence (92,93).

What is the role of surgery in moderate to severe GO?

- Rehabilitative surgery yields best results when GO is inactive. Very long duration of GO is no contraindication to rehabilitative decompression (100).
- Does orbital decompression compromise subsequent nonsurgical therapy?
 - In the rare event of reactivation of GO after rehabilitative surgery, systemic GCs and/or OR can be used with the usual expected efficacy (99).

Management of mild GO (Box 11)

Are glucocorticoids and/or orbital radiotherapy indicated or useful in mild GO?

- Although GCs and OR are of potential value in mild disease (60,73,74), they are usually not recommended as the risks outweigh the benefits. Simple measures (Box 4) are usually sufficient.

Is a "wait and see" strategy reasonable?

- GO is a self-limiting disease. In the absence of efficacious treatments with minimal side effects, watchful waiting is appropriate for the majority of patients with mild disease, especially those with a satisfactory quality of life, as assessed by the EUGOGO questionnaire (www.eugogo.org).

How should mild eyelid retraction, soft tissue swelling, and exophthalmos be managed and when in the course of the orbital disease?

- Sometimes even mild eyelid retraction, soft tissue swelling, or exophthalmos have a profoundly negative impact on psychosocial functioning and quality of life, depending on the circumstances of the individual (102,103).
- Treatment might be offered to these patients if careful consideration of risks and benefits favors intervention.

Special situations (Box 12 and Box 13)

How should a diabetic or hypertensive patient with moderate to severe or sight-threatening GO be treated?

- Systemic GCs can induce or exacerbate diabetes and/or hypertension. However, the indications for steroid use in patients with diabetes and/or hypertension are no different than in other patients. Close monitoring of glycemic control and blood pressure is important. Thiazide or loop diuretics should be used with caution during...

Box 11 Management of mild GO

Glucocorticoids are rarely justified in mild GO as the risks outweigh the benefits (IV, C).

Watchful waiting is appropriate for the majority of patients with mild GO (IV, C).

In a minority of patients with mild disease, quality of life may be so profoundly affected as to justify using treatments as for moderate to severe disease (IV, C).

- Combination of GC (either orally or locally) with OR is more effective than either treatment alone (57,82). It is unclear whether IV GCs with OR are more efficacious than IV GCs alone.
- Treatments of marginal or unproven value include somatostatin analogs (83–86), azathioprine (87), ciamexone (88), and IV immunoglobulins (62,89). Two studies have shown the superiority of the combination of oral GCs and cyclosporine than either treatment alone (58,59). The potential usefulness of immunomodulatory agents, such as rituximab (90) or etanercept (91), has been suggested by open studies, but no RCTs have been carried out as yet.

Do nonsurgical treatments reduce the subsequent need for rehabilitative surgery or do they adversely interfere with it?

- No RCTs have been performed to investigate specifically whether nonsurgical treatments reduce the subsequent need for rehabilitative surgery, so this important question remains unanswered.
- The theoretical concern that radiation-induced fibrosis may reduce orbital compliance and hence compromise subsequent therapies, is not supported by the available evidence (92,93).

What is the role of surgery in moderate to severe GO?

- Rehabilitative surgery yields best results when GO is inactive. Very long duration of GO is no contraindication to rehabilitative decompression (100).
- Does orbital decompression compromise subsequent nonsurgical therapy?
 - In the rare event of reactivation of GO after rehabilitative surgery, systemic GCs and/or OR can be used with the usual expected efficacy (99).

Management of mild GO (Box 11)

Are glucocorticoids and/or orbital radiotherapy indicated or useful in mild GO?

- Although GCs and OR are of potential value in mild disease (60,73,74), they are usually not recommended as the risks outweigh the benefits. Simple measures (Box 4) are usually sufficient.

Is a "wait and see" strategy reasonable?

- GO is a self-limiting disease. In the absence of efficacious treatments with minimal side effects, watchful waiting is appropriate for the majority of patients with mild disease, especially those with a satisfactory quality of life, as assessed by the EUGOGO questionnaire (www.eugogo.org).

How should mild eyelid retraction, soft tissue swelling, and exophthalmos be managed and when in the course of the orbital disease?

- Sometimes even mild eyelid retraction, soft tissue swelling, or exophthalmos have a profoundly negative impact on psychosocial functioning and quality of life, depending on the circumstances of the individual (102,103).
- Treatment might be offered to these patients if careful consideration of risks and benefits favors intervention.

Special situations (Box 12 and Box 13)

How should a diabetic or hypertensive patient with moderate to severe or sight-threatening GO be treated?

- Systemic GCs can induce or exacerbate diabetes and/or hypertension. However, the indications for steroid use in patients with diabetes and/or hypertension are no different than in other patients. Close monitoring of glycemic control and blood pressure is important. Thiazide or loop diuretics should be used with caution during...
high-dose GC therapy to avoid hypokalemia. The same principle applies to surgical treatments.

- OR may increase the risk of retinopathy in diabetic and hypertensive patients. (77,78,80,81), at least using a 20-Gy cumulative dose.
- Diabetes and/or hypertension are not contraindications to surgical orbital decompression or other surgical treatments for GO.

What is the best therapeutic approach to GO in childhood?

- GO is rare in childhood because of the low incidence of Graves’ disease in this age group (104,105). The eye disease is usually milder in children than in adults and often stabilizes and eventually resolves without intervention (105).
- Achieving and maintaining euthyroidism are as important objectives as in adult patients.
- Exposure to smoking (active and, possibly, passive) is probably as detrimental as in adults (106–108).
- Because of the effects on growth, GCs should be avoided unless DON is present. OR is contraindicated in children. Somatostatin analogs have been used in isolated cases, but RCTs on efficacy and safety are lacking (109).
- Orbital surgery may be necessary in cases of severe exophthalmos, but for most patients a conservative and expectant approach is appropriate.

Summary of consensus (Fig. 1)

All patients with GO should: be referred to specialist centers, be encouraged to quit smoking, and receive prompt treatment in order to restore and maintain euthyroidism.

Patients with sight-threatening GO should be treated with IV GCs as the first-line treatment; if response is poor after 1–2 weeks, they should be submitted to urgent surgical decompression. The treatment of choice for moderate to severe GO is IV GCs (with or without OR) if the orbitopathy is active; surgery (orbital decompression and/or squint surgery and/or eyelid surgery in this order) should be considered if the orbitopathy is inactive. In patients with mild GO, local measures and an expectant strategy are sufficient in most cases, but treatment may be justified if quality of life is affected significantly.

In Memoriam

This document is dedicated to the memory of Mark Prummel (1956–2005), one of the founders of EUGOGO, who greatly contributed in expanding our understanding of clinical and therapeutic aspects of GO.

Disclosure

The authors declare that there was neither financial support to this study nor conflict of interest that would prejudice its impartiality.

References

EUGOGO CONSENSUS STATEMENT ON GRAVES’ ORBITOPATHY 345

85. Marconi C, Bartalena L, Pinchera A 2000 Acute and severe liver damage associated with intravenous glucocorticoid pulse therapy in patients with Graves’ orbitopath... of patients with Graves’ orbitopathy, Thyroid 17:357–362.

Address reprint requests to: Professor Luigi Bartalena
Department of Clinical Medicine
University of Insubria
Varese
Italy

E-mail: lbartalena@libero.it or luigi.bartalena@uninsubria.it
This article has been cited by:

2. Rebecca S Bahn. 2008. Is radioiodine more likely than antithyroid drugs to worsen ophthalmopathy in patients with Graves disease?. *Nature Clinical Practice Endocrinology & Metabolism* 4:11, 594-595. [CrossRef]