

Frédéric FLAMANT Neurodevelopment group Institut de Génomique Fonctionnelle de Lyon Ecole Normale Supérieure de Lyon France

Learning objective: Finding two good reasons to study TRα1 and TRβ1/2

Hint1) Receptor-selective ligands would be useful.

Hint 2) There are now two genetic diseases: RTHα and RTHβ

500 My ago: The ancestral TR gene duplication and its consequences.

- 1) Redundancy: Provides robustness to thyroid hormone signaling
- 1) Subfunctionalization: changes in expression patterns distributes TR function to two proteins.
- 2) Neofunctionalization: due to changes in coding sequences one TR can gain new properties.

TR α 1 is the predominant receptor in brain.

Bradley et al., PNAS 1992

Changes in amino-acids sequence suggest subtle differences in the gene regulation properties of TR $\alpha1$ and TR $\beta1/2$

Are the properties of TRα1 and TRβ1 identical?

A global comparative analysis of TRα1 and TRβ1-mediated response to T3 in a neural cell line

C17.2 cells can differentiate into neuronal-like cells after serum deprivation

10% serum Nestin Immunostaining

0% Serum Tuj1 immunostaining

Digital gene expression

- Treat C17.2a or C17.2b cells with T3
- (10⁻⁷M, 6h, 12h, 24h, no serum)
- Extract RNA samples
- Reverse transcribe and prepare cDNA 3'end libraries
- Sequence cDNA libraries
- (>8x10⁶ reads/sample SOLID sequencing)

Q-RT-PCR confirmation of TRα1 selective response

Which genes are direct TR target? Chromatin affinity purification/sequencing: « ChapSeq » in C17.2 α and C17.2 β cells

3) IgG affinity purification of TRcontaining complexes

AGGTCGATCGATCGGACTAGATCG

AGGTCGATCGATCGGACTAGATCG
AGGTCGATCGATCGATCGGACTAGATCG

AGGICGAICGAICGAIGGAGGACGATCGATCGATGGGACTAGATC

AGGTCGATCGATCGATGGGACTAGATCG

AGGTCGATCGATCGATGGGACTAGATCG

Genome wide analysis reveals the existence of receptorspecific binding sites

Receptor selective response is not due to differential receptor binding

T3 signaling getting simpler?

MEME identifies only the DR4 consensus (MEME.org)

DR4 is the only consensus enriched in TR binding sites.

X axis: random sequence y axis: TR binding sites.

Only evidences for DR4

... but still room for alternatives

A recurrent co-occurrence with CTCF occupation

T3 target genes in C17.2: any relevance to neurodevelopment?

Hypothetical new connection of T3 with glucose metabolism

A putative regulation of brain sensitivity for hypoxia

Conclusions:

- 1) Both different expression patterns and different transactivation properties explain the different function of TR α 1 and TR β 1
- 2) Receptor selective response is not explained by selective promoter occupancy
- 3) TR/RXR/DR4/Coactivator complexes may have allosteric properties.
- 4) Regulation by TR of the hypoxia-pathway could be of physiological relevance in some situations.

Neurodevelopment Group IGFL ENS Lyon

Past group members:

Laure Quignodon Ph.D. (now in Lausanne)
Frédéric Picou Ph.D. (Now in Santiago)
Eva Romero post-doc (now in Bengalore)
Teddy Fauquier post-doc (now in Marseille)

<u>Collaborations:</u>
Hassan Avci Isabelle Dusart UPMC Paris

Present group members:

- 1) Fabrice Chatonnet post-doc
- 2) Romain Guyot IR CNRS
- 3) Sabine Richard CR INRA
- 4) Suzy Markossian IE INRA
- 5) Pierre Godement DR CNRS
- 6) Frédéric Flamant DR INRA

Special Thanks to:

Denise Aubert PBES Nadine Aguilera PBES

