Overview of Indeterminate Cytology

Scott Boerner MD FRCPC
Head Cytopathology, University Health Network
University of Toronto
DISCLOSURE

Nothing to disclose
Learning Objectives

- Understand the origins of indeterminate cytology results
- Appreciate the differences among the indeterminate cytology categories
- Investigate the use of non-molecular techniques in resolving indeterminate results
- Explore the limitations of non-molecular techniques in resolving indeterminate results
Atypia of undetermined significance (AUS) / follicular lesion of undetermined significance (FLUS)

Follicular neoplasm

Suspicious for carcinoma
The Problem

AUS / FLUS

- 2 to 27% of thyroid FNA diagnoses
 - Marked variability in use, often too frequent
 - "Target rate" of AUS diagnoses:
 - 7% of diagnoses
 - AUS / malignant ratio between 1.0 to 3.0
 - “Risk of malignancy”:
 - 5 to 15% (NCI) / 3 to 50% (literature)

- Clinical dilemma
 - What do you do now?
The Problem

- Follicular (or Hürthle cell) neoplasm
 - Synonyms
 - Suspicious for follicular (or Hürthle cell) neoplasm
 - 1 to 25% of thyroid FNA diagnoses (usually ~10%)
 - “Risk of malignancy”
 - 15 to 30% (NCI) / 8 to 85% (literature)
 - Clinical dilemma
 - Lobectomy vs. total thyroidectomy?
Appellation Misapprehension

Follicular neoplasm ≠ Follicular lesion
The Problem

- Suspicious for carcinoma
 - 2 to 6% of thyroid FNA diagnoses
 - Majority are suspicious for PTC
 - “Risk of malignancy”
 - 60 to 75% (NCI) / 21 to 100% (literature)
 - Clinical dilemma
 - Lobectomy vs. total thyroidectomy?
Origins of Indeterminates

Sample related
- Inadequate lesional sampling
- Cytopreparation issues

Lesional characteristics
- FVPTC

Interpretative

Definitional
- Capsular / vascular invasion defines malignancy
Resolving The Indeterminates

An once of prevention
 – Better sampling and cytoprep

Clinical
 – Patient characteristics
 – Lesional characteristics
 – Imagining - ultrasound characteristics / PET
 – “Reading between the lines”
Reading Between The Lines

The report’s description is a cryptogram that can be deciphered to learn the “truth”

- Based on the fallacy that pathologists are perfect / objective observers
 - What has been “seen”, may not be true
 - A misinterpretation
 - What was not “seen” may be diagnostically critical
- Perhaps an indicator to have the case reviewed
Resolving The Indeterminates

Repeat sampling
– Thematic variation
 Alternative sampling devices (large bore needle)
– Repeat sampling may address:
 Inadequate lesional sampling
 Cytopreparation issues
 Interpretative issues
– Primarily for AUS/FLUS & Suspicious
 ☑ Cannot address definitional issues
 ▶ Minimal utility in follicular neoplasms
Repetitive Sampling

- Outcomes of repeat FNA
 - Poorly studied
 - Retrospective, based on diagnostic reassignment, admixture of indeterminate categories, small numbers, selection bias, more than 1 repeat FNA, incomplete follow-up for repeat FNA, incomplete outcome follow-up
 - Usually <40% indeterminate patients get repeat FNA
 - Smaller number with surgical follow-up
Repetitive Sampling

Outcomes of repeat FNA

- Resolution - definitive FNA diagnosis: 42-65%

Limitations

- Resource intensive
- Additional harm done (patient & lesion)
- Many remain unresolved: 35-68%
 - Repeat FNA non-diagnostic: 1-31%
AUS Repetitive Sampling

<table>
<thead>
<tr>
<th>n = 516¹-³</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat FNA</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td></td>
</tr>
<tr>
<td>Abnormal</td>
<td>142</td>
</tr>
<tr>
<td>Benign</td>
<td>185</td>
</tr>
<tr>
<td>Benign</td>
<td>2</td>
</tr>
<tr>
<td>Benign</td>
<td>187</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>98.6%</td>
</tr>
<tr>
<td>Specificity</td>
<td>50.3%</td>
</tr>
<tr>
<td>PPV</td>
<td>43.4%</td>
</tr>
<tr>
<td>NPV</td>
<td>98.9%</td>
</tr>
<tr>
<td>FP Rate</td>
<td>49.7%</td>
</tr>
<tr>
<td>FN Rate</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

4,924 AUS FNA¹-³
1,856 (37.7% repeat FNA)
523 (10.6% biopsy follow-up)

PPV of AUS FNA 15.9%⁴
NPV of Benign FNA 96.3%⁴

Resolving The Indeterminates

Pathologically

- Second cytology reviews
 - Consensus reviews

- Morphologic / morphometric parameters

- Immunohistochemistry

- Genetic alterations
Second Cytology Reviews

Addresses only interpretative issues
– No impact on
 - Sampling inadequacies
 - Cytopreparatory deficiencies
 - Lesional issues
 - Definitional issues

Outcomes of second cytology reviews

- Poorly studied
 ▶ Retrospective, diagnostic reassignment, admixture of indeterminate categories, small numbers, selection bias, unblinded, incomplete follow-up
Second Cytology Reviews

Outcomes of second cytology reviews

- Resolution - definitive FNA diagnosis
 - AUS: 41-43%
 - FN: 24-51%
 - Suspicious for malignancy: 38-68%

Limitations

- Resource consumption - low
- Many remain unresolved: 32-76%
 - Review Result: non-diagnostic: 2-15%
AUS - Second Reviews

n = 132

<table>
<thead>
<tr>
<th>Second Review</th>
<th>Malignant</th>
<th>Benign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>36</td>
</tr>
</tbody>
</table>

Sensitivity 98.4%
Specificity 50.7%
PPV 63.2%
NPV 97.3%
FP Rate 49.3%
FN Rate 1.6%

Repeat FNA
43.4%
98.9%

PPV of AUS FNA 15.9%
NPV of Benign FNA 96.3%

825 AUS FNA second review
140 (17.0% biopsy follow-up)

2. Endocr J. 2012;59(3):205-12
FN - Second Reviews

<table>
<thead>
<tr>
<th>n = 116<sup>1</sup></th>
<th>Surgery</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Review</td>
<td>Malignant</td>
<td>Benign</td>
</tr>
<tr>
<td>Abnormal</td>
<td>22</td>
<td>84</td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

443 FN FNA second review
121 (27.3% biopsy follow-up)

Sensitivity 95.7%
Specificity 9.7%
PPV 20.8%
NPV 90.0%
FP Rate 90.3%
FN Rate 4.3%

NPV of Benign FNA 96.3%²
PPV of FN FNA 26.1%²
Suspicious - Second Reviews

<table>
<thead>
<tr>
<th>n = 379(^{1-2})</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Review</td>
<td>Malignant</td>
</tr>
<tr>
<td>Abnormal</td>
<td>349</td>
</tr>
<tr>
<td>Negative</td>
<td>2</td>
</tr>
</tbody>
</table>

Sensitivity	99.4%
Specificity	17.9%
PPV	93.8%
NPV	71.4%
FP Rate	82.1%
FN Rate	0.6%

562 Susp FNA second review
396 (70.5% biopsy follow-up)

PPV of Susp FNA 75.2\(^3\)
NPV of Benign FNA 96.3\(^3\)

2. Endocr J. 2012;59(3):205-12
Repeat or Re-Review

Second review is possibly better than repeat FNA?

- Data validity questionable
- Primarily for AUS and Suspicious categories
 - No assistance for follicular neoplasm?

- Second review advantages
 - Less cost
 - Less harm

- Second review limitation
 - Garbage in garbage out
Immunohistochemistry

Premise
- Aberrant antigen expression identifies malignancy
 - No absolute marker of malignancy

Requires reasonably abundant tissue
- Handicapped by sampling issues

Optimization and validation of staining a challenge
Immunohistochemistry

Numerous antigens investigated:

– Cytokeratin 19 (CK19)
– HBME-1
– Galectin-3
– Others
 ❖ Cyclin D1/D3
 ❖ CD57
 ❖ GLUT-1
 ❖ Fibronectin-1
 ❖ More
Immunohistochemistry

- Has not gained widespread application
 - Inconsistency of results
 - Variability in pretesting sample preparation (fixation)
 - Lack of standardization of testing
 - Antibody clones, dilutions, pre-treatments, etc.
 - Interpretative difficulties
 - Overlap in expression with benign entities
Ideal Universe
Managing the Indeterminates

- High quality FNA sample
- Refined “expert” cytologic diagnoses
- Non-molecular techniques to resolve the indeterminates are poorly studied
 - Appear of limited utility