

83rd Annual Meeting of the ATA October 16-20, 2013

Maternal Thyroid Function and Autoimmunity and Risk of Problem Behavior: The Generation R Study

Akhgar Ghassabian, MD PhD

Henning Tiemeier, MD PhD

Department of Child and Adolescent Psychiatry

Disclosure

Nothing to disclose

At the conclusion of this presentation, the participant should be able to:

- **1.** Name one consequence of thyroid autoimmunity during pregnancy on maternal health
- 2. Name two pregnancy complications related to thyroid autoimmunity in pregnancy
- **3.** Name two adverse effects of maternal thyroid autoimmunity on children's mental health
- **4.** Answer whether euthyroid women with Thyroid Peroxidase Antibodies need any intervention during pregnancy?
- **5.** Answer whether the children who are born to euthyroid mothers with Thyroid Peroxidase Antibodies need early monitoring for Attention Deficit/Hyperactivity Disorders

Background

Maternal hypothyroidism in pregnancy

Child's cognitive deficits

Hypothyroxinemia in first trimester of pregnancy

(low-for-gestational age free T4 with normal TSH)

Animals: Alterations of brain cortical cytoarchitecture

Humans: Cognitive deficits

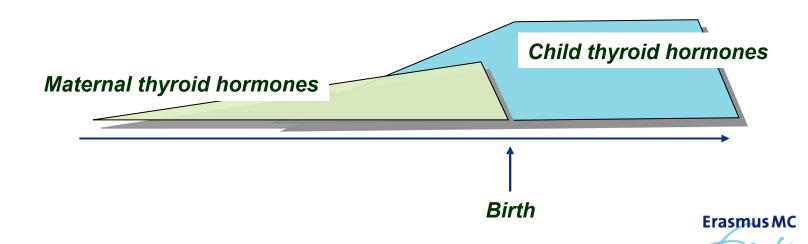
Elevated TPO-Abs in mothers

Miscarriage/preterm delivery

Pre and postnatal depression

Deficits in child's cognitive function and motor development

Erasmus MC zafus

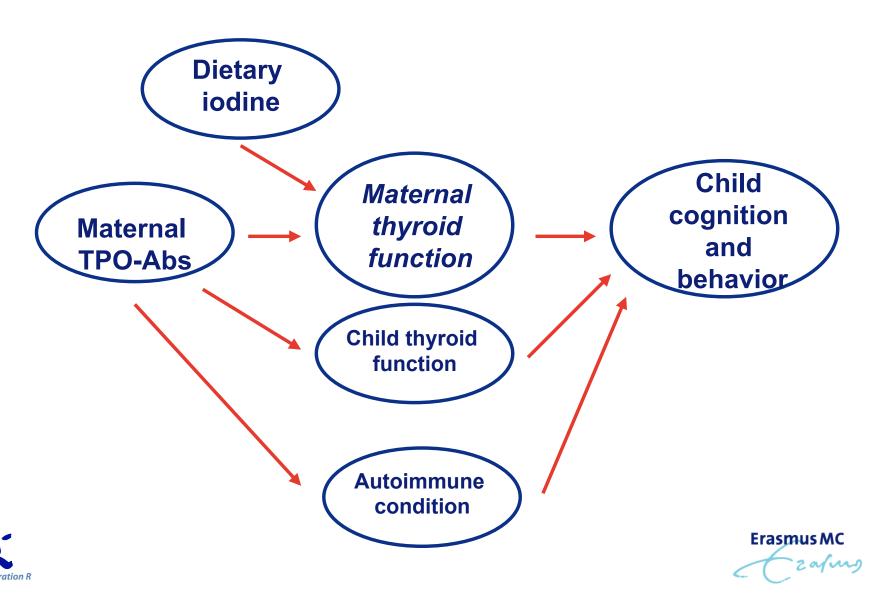

Thyroid Hormones and Brain

Neurogenesis

Neural migration

Synapse formation

Myelination



Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and Postpartum

- Overt hypothyroidism should be treated in pregnancy.
- TPOAb⁺ Women and subclinical hypothyroidism should be treated.
- There is insufficient evidence to recommend for or against universal treatment of TAb⁻ pregnant women with subclinical hypothyroidism.
- Isolated hypothyroxinemia should not be treated in pregnancy.

Background

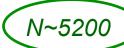
Aim

Early pregnancy thyroid function and autoimmunity

Language delay

Autistic symptoms

- Prospective cohort study
- From fetal life onwards
- 9,778 mothers and their children
- Urban, multi-ethnic population in Rotterdam



< 18 wks

Birth

- •TSH
- •Free T4
- •Thyroid Peroxidase Antibodies

Erasmus MC z afung

lodine and creatinine in urine samples

< 18 wks

Birth

- •TSH
- •Free T4
- •Thyroid Peroxidase Antibodies

Erasmus MC z afung

Birth

Language

Executive Function

3 years

6 years

Attention Deficit/ **Hyperactivity Problems**

Autistic symptoms

Erasmus MC

Parental Psychopathology

Apgar score

Household income

Sex

Birth

Mode of Delivery

Birth weight

Parental education

Maternal smoking

Ethnic background

Externalizing problems & Attention Deficit Hyperactivity Problems

- Cannot concentrate, cannot pay attention for long
- Cannot sit still, restless, or hyperactive
- Destroys property belonging to others

Executive Function

- Inhibition: to stop his/her own behavior
- Working memory: to hold information in mind to complete a task

Autistic symptoms

- Avoids eye contact, or has unusual eye contact
- Has repetitive, odd behaviors such as hand flapping or rocking

Maternal hypothyroxinemia and language development in children up to age 2.5 years

Maternal thyroid function in early pregnancy and expressive language delay at 18 and 30 months

	One time point				Across ages	
Maternal thyroid	Expressive language delay at age 18 months		Expressive language delay at age 30 months ^b		Expressive language delay at 18 and 30 months	
function measure	n	OR (95% CI), P	n	OR (95% CI), P	n	OR (95% CI), P
TSH, per sp	3384	0.91 (0.81-1.03), 0.136	2757	0.92 (0.81-1.06), 0.249	3614	0.92 (0.84–1.02), 0.100
FT ₄ , per sp	3409	0.95 (0.83-1.09), 0.430	2779	0.84 (0.71-0.99), 0.039	3643	0.90 (0.80-1.01), 0.069
Mild hypothyroxinemia ^c	2736 ^e	1.33 (0.91–1.94), 0.143	2225 ^e	1.47 (1.00-2.17), 0.051	2926 ^e	1.44 (1.09-1.91), 0.010
Severe hypothyroxinemia ^d	2736 ^e	1.77 (1.10–2.84), 0.018	2225 ^e	1.78 (1.07–2.94), 0.024	2926 ^e	1.80 (1,24–2.61), 0.002

Adjusted for maternal and child factors

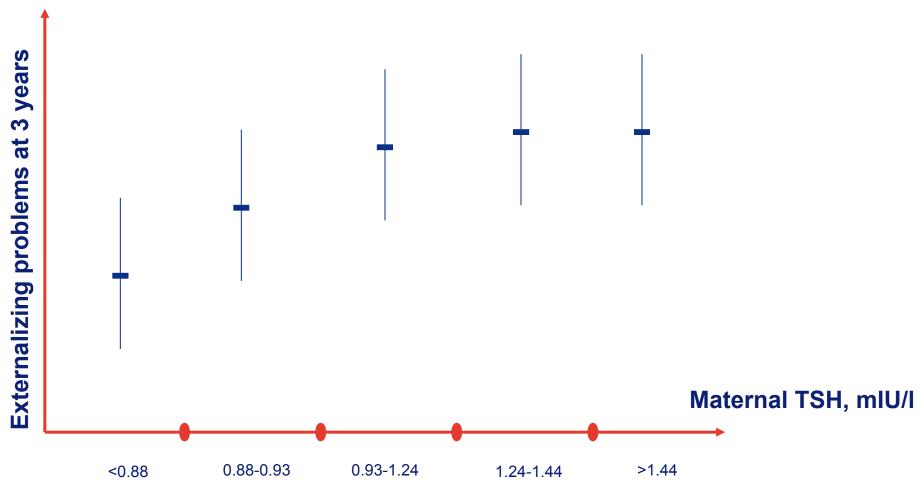
Henrichs et al. JCEM 2010, 95 (9), 4227-4234

Erasmus MC zafung

Maternal hypothyroxinemia and language development in children up to age 2.5 years

Maternal thyroid function in early pregnancy and expressive language delay at 18 and 30 months

	One time point				Across ages		
Maternal thyroid	Expressive language delay at Expressive language delay at age 30 months ^b		-	sive language delay at 8 and 30 months			
function measure	n	OR (95% CI), P	n	OR (95% CI), P	n	OR (95% CI), P	
TSH, per sp	3384	0.91 (0.81-1.03), 0.136	2757	0.92 (0.81-1.06), 0.249	3614	0.92 (0.84-1.02), 0.100	
FT ₄ , per sp	3409	0.95 (0.83-1.09), 0.430	2779	0.84 (0.71-0.99), 0.039	3643	0.90 (0.80-1.01), 0.069	
Mild hypothyroxinemia ^c	2736 ^e	1.33 (0.91-1.94), 0.143	2225 ^e	1.47 (1.00-2.17), 0.051	2926 ^e	1.44 (1.09-1.91), 0.010	
Severe hypothyroxinemia ^d	2736 ^e	1.77 (1.10–2.84), 0.018	2225 ^e	1.78 (1.07–2.94), 0.024	2926 ^e	1.80 (1,24–2.61), 0.002	


Adjusted for maternal and child factors

Henrichs et al. JCEM 2010, 95 (9), 4227-4234

Erasmus MC

Maternal TSH levels and externalizing problems in children at age 3 years

Erasmus MC

Ghassabian et al. Ped Res 2011, 69, 454-459

Maternal Thyroid Peroxidase Antibodies in early pregnancy and problem behavior in the children at age 3 years

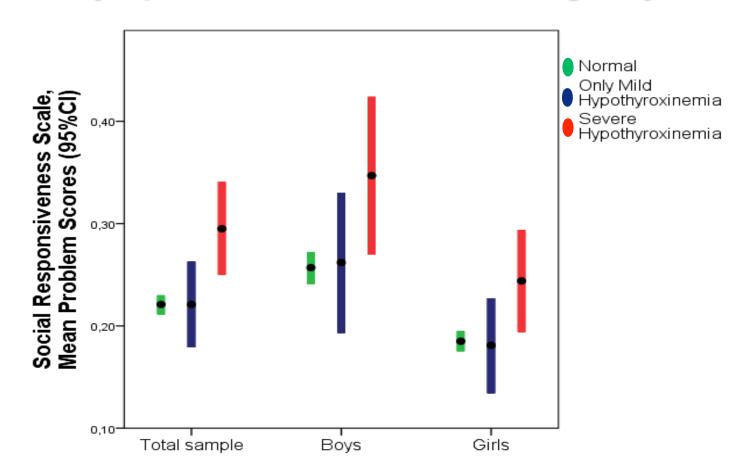
	Problem Behavior at the age of 3 years			
Maternal Thyroid Parameters	Maternal Rating	Paternal Rating	Maternal and Paternal Rating	
Outcomes	OR (95%CI)	OR (95%CI)	OR (95%CI)	
Attention Deficit/Hyperactivity Problems	1.60 (0.90-2.87)	1.89* (1.16-3.07)	1.77* (1.15-2.72)	
Oppositional Deviant Problems	1.46 (0.91-2.34)	1.36 (0.73-2.52)	1.39 (0.95-2.03)	

Adjusted for maternal and child factors

Ghassabian et al. Thyroid 2012, 22 (2), 178-186

Erasmus MC z afuns

Maternal Thyroid Peroxidase Antibodies in early pregnancy and problem behavior in the children at age 3 years


		Problem Behavior at the age of 3 years				
Maternal Thyroid Parameters Outcomes		Maternal Rating	Paternal Rating	Maternal and Paternal Rating OR (95%CI)		
		OR (95%CI)	OR (95%CI)			
	Attention Deficit/Hyperactivity Problems	1.60 (0.90-2.87)	1.89* (1.16-3.07)	1.77* (1.15-2.72)		
	Oppositional Deviant Problems	1.46 (0.91-2.34)	1.36 (0.73-2.52)	1.39 (0.95-2.03)		

Adjusted for maternal and child factors

Ghassabian et al. Thyroid 2012, 22 (2), 178-186

Maternal hypothyroxinemia in early pregnancy and autistic symptoms in the children at age 6 years

Low maternal urinary iodine and children's scores on executive function at 4 years

	All women (n = 692)					
	Adjusted ^{2,4}	Adjusted ^{2,4} Additionally adjusted ^{2–4}		Adjusted ^{2,4}		sted ^{2–4}
	β (95% CI)	P value	β (95% CI)	<i>P</i> value		
Inhibition	0.05 (0.01, 0.10)	0.03	0.04 (-0.00, 0.09)	0.07		
Shifting	-0.01 (-0.05, 0.03)	0.64	-0.02 (-0.06, 0.02)	0.41		
Emotional control	0.01 (-0.04, 0.06)	0.63	0.00 (-0.05, 0.05)	0.94		
Working memory	0.07 (0.03, 0.12)	0.003	0.06 (0.01, 0.10)	0.01		
Planning/ organization	0.03 (-0.02, 0.08)	0.19	0.02 (-0.03, 0.07)	0.43		
Global executive composite	0.05 (0.00, 0.10)	0.05	0.03 (-0.01, 0.08)	0.16		

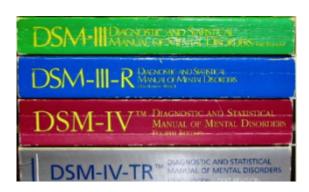
Adjusted for maternal and child factors

rafus

Low maternal urinary iodine and children's scores on executive function at 4 years

		All women (n = 692)				
	Adjusted ^{2,4}		Additionally adjusted ^{2–4}			
	β (95% CI)	<i>P</i> value	β (95% CI)	<i>P</i> value		
Inhibition	0.05 (0.01, 0.10)	0.03	0.04 (-0.00, 0.09)	0.07		
Shifting	-0.01 (-0.05, 0.03)	0.64	-0.02 (-0.06, 0.02)	0.41		
Emotional control	0.01 (-0.04, 0.06)	0.63	0.00 (-0.05, 0.05)	0.94		
Working memory	0.07 (0.03, 0.12)	0.003	0.06 (0.01, 0.10)	0.01		
Planning/ organization	0.03 (-0.02, 0.08)	0.19	0.02 (-0.03, 0.07)	0.43		
Global executive composite	0.05 (0.00, 0.10)	0.05	0.03 (-0.01, 0.08)	0.16		

Adjusted for maternal and child factors



74 Erasmus MC

Limitations

Maternal thyroid parameters, but not child thyroid function

Parental rating of behavior and cognition but not clinical diagnosis

Conclusion

Observational studies suggest the effect of maternal low thyroid function (within the normal range) and thyroid autoimmune disease on child outcomes.



Erasmus MC z afung

Conclusion

Observational studies suggest the effect of maternal low thyroid function (within the normal range) and thyroid autoimmune disease on child outcomes.

So far Randomized Trails failed to show the effectiveness of thyroid screening and treatment at population level.

ESTABLISHED IN 1812

FEBRUARY 9, 2012

VOL. 366 NO. 6

Antenatal Thyroid Screening and Childhood Cognitive Function

John H. Lazarus, M.D., Jonathan P. Bestwick, M.Sc., Sue Channon, D.Clin.Psych., Ruth Paradice, Ph.D., Aldo Maina, M.D., Rhian Rees, M.Sc., Elisabetta Chiusano, M.Psy., Rhys John, Ph.D., Varvara Guaraldo, M.S.Chem., Lynne M. George, H.N.C., Marco Perona, M.S.Chem., Daniela Dall'Amico, M.D., Arthur B. Parkes, Ph.D., Mohammed Joomun, M.Sc., and Nicholas J. Wald, F.R.S.

Erasmus MC z afuns

Future investigations...

Brain imaging

Structural and functional abnormalities (e.g. hippocampus and cerebellum) in humans

Genetics (Mendelian randomization)

Erasmus MC zafus

Acknowledgment

All the participating children and their parents

Department of Child and Adolescent Psychiatry
Department of Internal Medicine
Department of Immunology
Department of Obstetrics and Gynecology
Department of Epidemiology

European Community 7th Framework Programme (NUTRIMENTHE)

Erasmus MC z afung