Clinical MAY 2013 VOLUME 25 • ISSUE 5 THYROIDOLOGY

Clinical Care of Women with Hypothyroid-
ism during their Reproductive Years
Requires Awareness of the Consequences
by Patients and Clinicians

Vadiveloo, T, Mires GT, Donnan PT, Leese GP. Thyroid testing in pregnant women with thyroid dysfunction in Tayside, Scotland: the thyroid epidemiology, audit and research study (TEARS). Clin Endocrinol (Oxf) 2013;78:466-71.

The Placenta Is Capable of Compensating for Smoking-Induced Thiocyanate Inhibition of Its Iodide Symporter IO3

Andersen SL, Nøhr SB, Wu CS, Olsen J, Pedersen KM, Laurberg P. Thyroglobulin in smoking mothers and their newborns at delivery suggests autoregulation of placental iodide transport overcoming thiocyanate inhibition. Eur J Endocrinol. February 26, 2013 [Epub ahead of print].

The BRAF V600E Mutation Increases Mortality in Papillary Thyroid Cancer . . 105

Xing M, Alzaharani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vioanello F, Tuttle RM, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493-1501

Han JM, Kim TY, Jeon MJ, Yim JH, Kim WG, Song DE, Hong SJ, Bae SJ, Kim HK, Shin MH, Shong YK, Kim WB. Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur J Endocrinol. March 19, 2013 [Epub ahead of print].

Does the Risk of Malignancy Increase When a Thyroid Nodule Is Larger Than 2 cm?.. 109

Kamran SC, Marqusee E, Kim MI, Frates MC, Ritner J, Peters H, Benson CB, Doubilet PM, Cibas ES, Barletta J,

Cho N, Gawande A, Ruan D, Moore FD Jr, Pou K, Larsen PR, Alexander EK. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013;98:564-70. Epub December 28, 2012; doi: 10.1210/jc.2012-2968.

Diagnostic 131-I SPECT/CT Scans Detect Unsuspected Metastases after Thyroidectomy for DTC......

Avram AM, Fig LM, Frey KA, Gross MD, Wong KK. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging? J Clin Endocrinol Metab. February 21, 2013 [Epub ahead of print].

Cheng SP, Lee JJ, Liu TP, Lee KS, Liu CL. Preoperative ultrasonography assessment of vocal cord movement during thyroid and parathyroid surgery. World J Surg 2012;36:2509-15.

Fernández-Real JM, Corella D, Goumidi L, Mercader JM, Valdés S, Rojo Martínez G, Ortega F, Martinez-Larrad MT, Gómez-Zumaquero JM, Salas-Salvadó J, Martinez González MA, Covas MI, Botas P, Delgado E, Cottel D, Ferrieres J, Amouyel P, Ricart W, Ros E, Meirhaeghe A, Serrano-Rios M, Soriguer F, Estruch R. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show gene-diet interactions. Int J Obes. February 12, 2013 [Epub ahead of print]. doi:10.1038/ijo.2013.11.

Follow us on Facebook

Follow us on Twitter

FOUNDED 1923

Editor-in Chief

Jerome M. Hershman, MD

Distinguished Professor of Medicine UCLA School of Medicine and VA Greater Los Angeles Healthcare System Endocrinology I I I D, I I 301 Wilshire Blvd. Los Angeles, CA 90073 Email: jhershmn@ucla.edu

Associate Editors:

Albert G. Burger, MD

Professor, University of Geneva Geneva, Switzerland Email: agburger@bluewin.ch

Jorge H. Mestman, MD

Professor of Clinical Medicine and OB/GYN University of Southern California, Keck School of Medicine Los Angeles, CA Email: mestman@usc.edu

Elizabeth N. Pearce, MD, MSc

Associate Professor of Medicine Boston University School of Medicine Boston, MA Email: Elizabeth,pearce@bmc.org

Wendy Sacks, MD

Cedars-Sinai Medical Center Department of Medicine Health Sciences Assistant Clinical Professor University of California, Los Angeles email: wendy.sacks@cshs.org

Stephen W. Spaulding, MD

Professor of Medicine Department of Medicine University at Buffalo, SUNY Email: medspaul@buffalo.edu

Cord Sturgeon, MD

Associate Professor of Surgery Director of Endocrine Surgery Northwestern University Feinberg School of Medicine Chicago, IL Email: csturgeo@nmh.org

President

Bryan R. Haugen, MD

Secretary/Chief Operating Officer John C. Morris, MD

Treasurer

David H. Sarne, MD

President-Elect

Hossein Gharib, MD

Past-President James A. Fagin, MD

Treasurer-Elect

Gragory W. Pandalph MC

Gregory W. Randolph, MD

Executive DirectorBarbara R. Smith, CAE

American Thyroid Association

6066 Leesburg Pike, Suite 550 Falls Church, VA 22041 Telephone: 703-998-8890 Fax: 703-998-8893 Email: thyroid@thyroid.org

Designed By

 ${\bf Karen\ Durland\ (kdurland@gmail.com)}$

Clinical Thyroidology

Copyright © 2013 American Thyroid Association, Inc. Printed in the USA.All rights reserved.

Clinical THYROIDOLOGY

VOLUME 25 • ISSUE 5

MAY 2013

Clin Thyroidol 2013;25:100-102.

Clinical Care of Women with Hypothyroidism during their Reproductive Years Requires Awareness of the Consequences by Patients and Clinicians

Jorge H. Mestman

Vadiveloo, T, Mires GT, Donnan PT, Leese GP. Thyroid testing in pregnant women with thyroid dysfunction in Tayside, Scotland: the thyroid epidemiology, audit and research study (TEARS). Clin Endocrinol (Oxf) 2013;78:466-71.


Background

Early in normal pregnancy, thyroxine demands increase by 30% to 50%, and these demands are easily achieved in women not affected by thyroid pathology. The objective of these authors was to study a representative group of women of the U.K. population on thyroxine-replacement therapy to assess the pattern of serum TSH determination before and during pregnancy and the proportion of women who have their dose of thyroxine adjusted according to the recommendation of recently published guidelines.

Methods Population

Health care data on pregnant women in Tayside, Scotland. Five principle databases were used to identify pregnant women on thyroxine therapy in the study population. These databases covered primary, secondary, and private health care. All pregnant women who were 18 years or older and who delivered between January 1, 1993, and March 31, 2011 in Tayside were identified. Patients were included in the study if they had at least three thyroxine prescriptions prior to pregnancy, at least one of which was within 6 months prior to pregnancy. The main outcome study was the number of TSH assays performed during pregnancy and the changes in dosage of thyroxine precontinued on next page

Back to Contents

Clinical Care of Women with Hypothyroidism during their Reproductive Years Requires Awareness of the Consequences by Patients and Clinicians

scribed during pregnancy; the main analysis was performed using TSH trimester-specific ranges (0.4 to 2.5 mU/L in the first trimester and 0.4 to 3.0 mU/L in the second and third trimesters). Gestation was confirmed with either first- or early-second-trimester ultrasound scan.

The mean (±SD) age of these women was 32.1±5.2 years. The percentage of pregnant women who were prescribed thyroxine increased from 0.4% (95% CI, 0.3 to 0.7) in 1994 to 2.3% (95% CI, 2 to 3) in 2010

Results

The authors identified 950 pregnant women who had thyroxine prescribed prior to pregnancy. Overall, 96.9% of these women had at least one TSH assay performed during or just prior to pregnancy, 81.2% of them in the first trimester. In the first trimester, of 423 (55%) women who had elevated TSH, only 18

(4.3%) had at least one low FT₄ or T₄ level. Low or suppressed serum TSH was detected in about 15% of women in the last 2 months before conception or in the first trimester. In women with an elevated serum TSH in the first trimester, thyroxine dosage was increased in only 39.2%. There was a significant decrease in the median serum TSH during pregnancy—2.5 mU/L at 6 weeks, 2.6 mU/L at 12 weeks and 1.4 mU/L at 24 weeks, representative of active adjustment of the levothyroxine dose.

Conclusions

Many patients on long-term thyroxine therapy had a TSH above the reference range during pregnancy and especially, 55% of them, during the first trimester of pregnancy. Serum TSH concentration declined during pregnancy, reflecting active management. However, the decline in TSH occurs too late in pregnancy. It should be adjusted earlier.

ANALYSIS AND COMMENTARY • • • • •

It is well established that in the first trimester of human pregnancy there is an increased demand for thyroid hormones, by about 30% to 50%. This increased demand is due to several factors, among them the half-life prolongation and increase in serum TBG level, an increase in renal iodine excretion, and the thyroid-stimulating effect of human chorionic gonadotropin. As a result of these changes, there is a slight FT₄ increase, albeit within the normal reference range, and a lowering of serum TSH, with a significant number of normal pregnancies with serum TSH values below 0.3 mIU/L and even with suppressed values. This increase in thyroid production provides transplacental passage of maternal thyroid hormones to the fetus, since the fetal hypothalamic-pituitarythyroid axis is fully functioning only by 14 to 18 weeks of gestation. In women with normal thyroid-gland function, this increase in thyroid demand is easily compensated; however, women on thyroid-replacement therapy because of hypothyroidism (previous

ablation or intrinsic thyroid disease) or those euthyroid women with chronic autoimmune thyroiditis, are at risk for hypothyroidism early in pregnancy, since the diseased or absent thyroid gland is unable to compensate for this increase in thyroxine demand. Even mild hypothyroidism in early pregnancy has been reported to affect maternal, obstetrical, and neonatal outcome, and motor and intellectual performance in their children, although not all the studies have consistent outcomes (1, 2). The most common maternal complications in women with hypothyroidism and even in euthyroid women with chronic thyroiditis are spontaneous miscarriages and preterm labor. Therefore, it is imperative to educate women of childbearing age who have thyroid disease and those on thyroid-replacement therapy about the importance if achieving an appropriate serum TSH level before contemplating pregnancy and to have the results of thyroid-function tests assessed shortly after conception. One study addressed the issue of thyroxine adjustment early after conception, with continued on next page

Clinical Care of Women with Hypothyroidism during their Reproductive Years Requires Awareness of the Consequences by Patients and Clinicians

the recommendation to increase the thyroxine dose by about 25% of the prepregnancy dose (taking two extra doses of L-T₄) at the time of pregnancy diagnosis until thyroid-test results are available (3). In another study, the authors suggested keeping serum TSH around 1 mIU/L at the time of pregnancy planning, which will secure a serum TSH of <2.5 mIU/L in early pregnancy in almost 82.8% of the studied women (4). This concept could be applied to women on thyroxine-replacement therapy who are contemplating pregnancy, but not to those with euthyroid chronic thyroiditis. It is assumed that detecting and correcting hypothyroidism early in pregnancy would prevent pregnancy complications (5). As this and other studies have shown (6), over 40% of women on thyroxine-replacement therapy have a serum TSH above the trimester-specific reference range at the first obstetrical visit. Since the first obstetrical visit in the majority of women is after 8 weeks of gestation, prevention of hypothyroidism early in pregnancy should be a medical priority. Medical identification of these women is a public health necessity, similar to the identification of women in the prediabetic stage before conception. A proper medical and family history, along with detection of thyroid autoimmunity on physical examination (presence of goiter, vitiligo) and a determination of serum TSH and TPOAb will diagnose women with euthyroid thyroiditis who are at risk for hypothyroidism after conception. Since more than 50% of pregnancies in this country are unplanned, it will require a strong effort from our medical and obstetrical societies to provide patients and health care professionals proper medical education in order to avoid hypothyroidism early in pregnancy in women at risk.

- 1. Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999;341:549-55.
- Lazarus JH, Bestwick JP, Channon S, et al. Antenatal thyroid screening and childhood cognitive function. N Engl J Med 2012;366:493-501.
- 3. Yassa L, Marqusee E, Fawcett R, et al. Thyroid Hormone Early Adjustment in Pregnancy (the THERAPY) trial. J Clin Endocrinol Metab 2010;95:3234-41. Epub May 12, 2010.
- 4. Abalovich M, Alcaraz G, Kleiman-Rubinsztein J, et al. The relationship of preconception

- thyrotropin levels to requirements for increasing the levothyroxine dose during pregnancy in women with primary hypothyroidism. Thyroid 2010;20:1175-8.
- Negro R, Formoso G, Mangieri T, et al. Levothyroxine treatment in euthyroid pregnant women with autoimmune thyroid disease: effects on obstetrical complications. J Clin Endocrinol Metab 2006;91:2587-91. Epub April 18, 2006.
- McClain MR, Lambert-Messerlian G, Haddow JE, et al. Sequential first- and second-trimester TSH, free thyroxine, and thyroid antibody measurements in women with known hypothyroidism: a FaSTER trial study. Am J Obstet Gynecol 2008;199, 129.e1-129.e6. Epub April 29, 2008.

The Placenta Is Capable of Compensating for Smoking-Induced Thiocyanate Inhibition of Its Iodide Symporter

Albert G. Burger

Andersen SL, Nøhr SB, Wu CS, Olsen J, Pedersen KM, Laurberg P. Thyroglobulin in smoking mothers and their newborns at delivery suggests autoregulation of placental iodide transport overcoming thiocyanate inhibition. Eur J Endocrinol. February 26, 2013 [Epub ahead of print].

SUMMARY • • • • • • • • • • • • •

Background

Blood levels of thiocyanate are known to be increased in smokers. It has been reported that in a population exposed to moderate iodine deficiency hypothyroidism is more severe in smokers than in nonsmokers (1). Thiocyanate inhibits the sodium iodide symporter (NIS), which is the main thyroidal iodide transporter. NIS is also present in tissues other than the thyroid, such as the placenta and the lactating mammary gland. In the case of partial inhibition of NIS by thiocyanate, thyroid activity gradually increases in order to overcome the inhibition. This compensatory mechanism is reflected by increased serum thyroglobulin levels. The purpose of the article under discussion was to determine whether compensating mechanisms capable of overcoming NIS inhibition by thiocyanate also exist in the placental-fetal unit.

Methods

The study was performed before the introduction of mandatory iodine supplementation in Denmark (year 2000). A total of 140 healthy pregnant women were studied. All women were clinically judged to be free of any thyroid problems. Maternal-blood and cord-blood samples were obtained at delivery for the measurement of thyroglobulin. On day 5, breast milk and a fetal urine sample were obtained for the measurement of iodine. The history of smoking reported by the study subjects was verified by measuring a serum metabolite of nicotine. The correlation was excellent.

Results

Forty-seven of the 140 mothers were given an iodine supplement of 150 mg per day during the pregnancy. The number of smokers was similar in the group receiving iodine and those not receiving iodine, and urinary iodide concentrations were similar in smoking and nonsmoking mothers. In contrast, urinary iodine in breast-fed newborns from smoking mothers was significantly decreased. Moreover, breast milk iodine in smokers was only half of that in the controls.

As expected, there was a marked difference in serum thyroglobulin depending on iodine supplementation (maternal serum, 14 and 29 mg/L in the group on supplemental iodine and those not on supplemental iodine, respectively; cord serum, 13 vs. 60 mg/L). In addition, smoking increased maternal serum thyroglobulin independently of iodine supplementation by a factor of 1.56 and increased cord blood by a factor of 1.43. Not surprisingly, the effect was more striking in mothers without iodine supplementation. Since thiocyanate inhibits NIS, it was interesting to compare cord-blood to maternal-blood thyroglobulin levels in smokers and nonsmokers, with and without iodine supplementation. Unexpectedly, the ratio was not affected by smoking or by iodine supplementation.

Conclusions

In an area of moderate iodine deficiency, smoking, with its consequence of increased serum thiocyanate levels is associated with increased maternal-continued on next page

The Placenta Is Capable of Compensating for Smoking-Induced Thiocyanate Inhibition of Its Iodide Symporter

Andersen SL, et al.

and cord-blood thyroglobulin levels. In mothers on moderate iodine supplementation, the thyroglobulin levels are lower than in mothers not receiving iodine supplementation, but the difference between smokers and nonsmokers is still present. However, the ratio of serum thyroglobulin in a given mother and her child was not altered by smoking or by iodine supplementation.

ANALYSIS AND COMMENTARY • •

It is well known that thiocyanate inhibits NIS and that thyroidal autoregulation of its activity is able to compensate for this interference. In contrast, although the maternal breast also expresses NIS, there appears to be no autoregulation in this tissue, since the iodine content of maternal milk is decreased by increased thiocyanate serum levels. The placental iodide transport is closer to that of the thyroid: indeed, it is assumed that it is regulated, at least to some extent, by human chorionic gonadotropin (HCG) stimulation. In addition to NIS, the placenta possesses other transporters of iodide that are not blocked by thiocyanate. Yet there is still a lot of uncertainty in this field. In the present article, the authors show that despite smoking and moderate iodine deficiency the ratio between the maternal and fetal thyroglobulin levels is not altered. This finding is taken to indicate that the placenta can also adjust to the partial inhibition of NIS by thiocyanate.

In clinical medicine it is often difficult to prove a concept. The authors believe that placental autoregulation is evidenced by the absence of a change in thyroglobulin ratio between mother and child when there is exposure to thiocyanate. Yet other explanations cannot be excluded; for instance, under the influence of thiocyanate, maternal iodide concentrations could increase, compensating for the decreased iodide uptake by the placenta.

Since smoking during pregnancy is widely discouraged, it is likely that the prevalence of smoking by child-bearing women has greatly decreased. There are many reasons for this recommendation, such as the fact that other aspects of endocrine function are perturbed by smoking (2). In this respect it is interesting to note the finding by these authors that infants breast-fed by smoking mothers have a markedly decreased urinary iodine excretion, requiring a compensatory increase in thyroid function.

- 1. Muller B, Zulewski H, Huber P, Ratcliffe JG, Staub JJ. Impaired action of thyroid hormone associated with smoking in women with hypothyroidism. N Engl J Med 1995;333:964-9.
- 2. Kapoor D, Jones TH. Smoking and hormones in health and endocrine disorders. Eur J Endocrinol 2005;152:491-9.

The BRAF V600E Mutation Increases Mortality in Papillary Thyroid Cancer

Jerome M. Hershman

Xing M, Alzaharani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vioanello F, Tuttle RM, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493-1501

SUMMARY • • • • • • • • • • • •

Background

Papillary thyroid cancer (PTC) has a very low 5-year mortality, usually in the range of 3 to 5%. The BRAF V600E oncogenic mutation results in a valine to glutamic acid change in codon 600 of the BRAF protein, resulting in constitutive activation of the mitogen-activated protein kinase signaling pathway. This mutation occurs in about 45% of PTC and is more common in conventional PTC than in the follicular variant. The BRAF V600E mutation is associated with more aggressive tumors based on conventional staging and with higher recurrence of PTC as compared with PTC without the mutation (1). The purpose of the present multicenter study was to define the association between the BRAF V600E mutation and PTC-related mortality.

Methods

The retrospective study was conducted at 13 medical centers in 7 countries and included data on 1849 patients. The United States and Italy contributed about two thirds of the patients. Genomic DNA was isolated from the primary tumor and used to analyze the sequence of exon 15 of the BRAF gene for the V600E mutation. This was done after surgical and medical therapy to ensure that mutation status did not influence decisions about therapy. PTC-specific death was defined as death occurring from incurable advanced cancer that compromised vital organs.

Statistical analysis included Kaplan–Meier survival curves and Cox proportional-hazards regression

analyses to compare survival in patients based on mutation status. Interactions of mutation status with various clinicopathological factors was calculated. There was no adjustment for multiple comparisons in doing subgroup analyses.

Results

The overall median follow-up time was 33 months after the initial treatment. The prevalence of the mutation was 45.7%. There were 56 PTC-related deaths among the 1849 patients, representing an overall mortality of 3.0%. Eighty percent of those who died had the BR AF mutation, and 5.3% of those with the BRAF mutation died, as compared with only 1.1% of those without the mutation (P<0.001). Rates of deaths per 1000 patient-years in mutation-positive versus mutation-negative patients were 12.9 (95% CI, 9.6 to 17.2) versus 2.5 (95% CI, 1.4 to 4.5).

The age-adjusted hazard ratio (HR) for those with the mutation was 2.66 (95% CI, 1.30 to 5.43). However, when aggressive tumor features of lymph-node metastases, extrathyroidal invasion, and distant metastases were included in the model, the association of the mutation with mortality was no longer statistically significant.

There was a significant positive interaction between the mutation and lymph-node metastases, distant metastases, stage IV disease, or patient age at diagnosis. The increased mortality with age was very evident in those with the mutation as compared without it. However, the association of the mutation continued on next page

The BRAF V600E Mutation Increases Mortality in Papillary Thyroid Cancer

with mortality was not statistically significant in patients with disease stages I, II, or III. In patients with distant metastases, the presence of the BRAF mutation increased mortality from 1.4% (without mutation) to 51.5% (with mutation).

Conclusions

This retrospective multicenter study shows that the presence of the BRAF V600E mutation was significantly associated with increased cancer-related mortality in patients with PTC.

ANALYSIS AND COMMENTARY • • • • •

This important study with contributions from many countries provides convincing data to show that the BRAF V600E mutation causes PTC to be so aggressive that it results in mortality. The results also provide confidence in the staging system that uses conventional clinicopathological criteria to predict outcome. This does not detract from the conclusion that having the BRAF mutation makes PTC more aggressive. With time for the disease to develop, those with the mutation are more likely to progress to a worse outcome, previously recognized as recurrence and now shown to result in increased mortality.

Why does this occur? Tumors with the BRAF mutation are more likely to be dedifferentiated and to have lost the expression of the sodium-iodide symporter (NIS) so they do not concentrate radioiodine (1,2). The paper by Ho et al (reviewed in the April 2013 issue

of Clinical Thyroidology, p. 76) shows that therapy that can induce reexpression of NIS usually fails in patients with this mutation (3). In addition, the BRAF mutation up-regulates various tumor-promoting molecules (1).

Should BRAF mutation status be included in assessing the risk of recurrence and mortality of thyroid cancer? The present study argues in favor of including this mutation as a predictor of mortality in high-risk patients based on conventional staging, but not in low-risk patients. In regard to recurrence, BRAF mutation status had an additional effect in predicting recurrence when added to conventional staging systems, including TNM, Ames, and Macis (4). The current study relating the BRAF V600E mutation to mortality as well as data showing that these tumors are more likely to recur provide a basis for using more aggressive treatment and surveillance in patients with this mutation.

- 1. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742-62. Epub October 16, 2007.
- 2. Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, Kim KW, Hahn SK, Youn YK, Kim KH, et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 2012;118:1764-73. Epub August 31, 2011.
- 3. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, Pentlow KS, Zanzonico PB, Haque S, Gavane S, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013;368:623-32.
- 4. Prescott JD, Sadow PM, Hodin RA, Le LP, Gaz RD, Randolph GW, Stephen AE, Parangi S, Daniels GH, Lubitz CC. BRAF V600E status adds incremental value to current risk classification systems in predicting papillary thyroid carcinoma recurrence. Surgery 2012;152:984-90.

Obesity Is Associated with Thyroid Cancer Risk in Women

Elizabeth N. Pearce

Han JM, Kim TY, Jeon MJ, Yim JH, Kim WG, Song DE, Hong SJ, Bae SJ, Kim HK, Shin MH, Shong YK, Kim WB. Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur J Endocrinol. March 19, 2013 [Epub ahead of print].

SUMMARY • • • • • • • •

Background

Obesity is known to be a risk factor for many cancers; it has been estimated that approximately 6% of new U.S. cancers may be attributable to obesity (1). Previous observational studies have suggested a moderate association between increased body-mass index (BMI) and differentiated thyroid cancer risk in women (2,3) or in both sexes (4-6).

Methods

This cross-sectional study examined associations between obesity and thyroid cancer. The study population included 15,068 individuals selected from the 24,935 patients who underwent routine checkups at a single medical center in Seoul, Korea, in 2007 and 2008. Individuals with incomplete data were excluded, as were those with serum TSH < 0.4 mIU/L or >10 mIU/L or a history of thyroid dysfunction, thyroid nodule, thyroid surgery, or thyroid cancer. Patients with a history of thyroid cancer in firstdegree relatives were also excluded. Fasting glucose, triglyceride, insulin, and TSH measurements and height, weight, and waist circumference were ascertained in all subjects. Bioelectrical impedance was used to measure total body-fat mass, and the fat ratio was defined as the fat mass divided by the body weight. Thyroid ultrasonography was performed in all patients as part of the routine health screening, and 7472 (50%) of subjects had at least one thyroid nodule. FNA biopsies were performed on all of the 1427 patients with nodules >1 cm or with any suspicious ultrasonographic features. Of these, 269

subjects had suspicious cytopathologic findings. Following surgery, 251 patients had histologically proven papillary or follicular thyroid carcinoma, with a median tumor size of 0.6 cm; 76% of tumors were <1 cm, and 98.5% were papillary carcinomas. An additional seven patients with suspicious FNA findings who were observed without surgery, and nine who were lost to follow-up, were considered to have thyroid cancer for the purpose of analysis. Logistic-regression analyses were used to examine associations between obesity-related risk factors and thyroid cancer risk. All analyses were stratified by sex.

Results

Among women, the 140 patients with thyroid cancer were more likely to be obese (BMI, ≥25) than women without cancer (30% vs. 22%, P = 0.004) and had a higher mean waist circumference, fat ratio, and blood pressure. These differences were not observed in men. In logistic-regression models adjusted for age, smoking status, and serum TSH level, BMI was a significant predictor of thyroid cancer in women (odds ratio [OR], 1.63; 95% CI 1.24 to 2.10) but not in men (OR, 1.16; 95% CI, 0.85 to 1.57).

Conclusions

This is the first study to examine associations between obesity and thyroid cancer risk in a population systematically screened with ultrasound. Obesity, but not serum TSH or serum insulin, was associated with differentiated thyroid cancer risk in women. No associations with thyroid cancer risk were observed in men. *continued on next page*

Obesity Is Associated with Thyroid Cancer Risk in Women

Han JM, et al.

ANALYSIS AND COMMENTARY • • • •

These data confirm previous studies demonstrating associations between obesity and thyroid cancer risk. Study strengths include the large sample size and the uniform diagnostic strategy for thyroid cancer. It is not possible to assess causality on the basis of a cross-sectional study, and the study is also limited by the use of a selected population and by assessment of a relatively small number of covariates. Importantly, most cancers in this study were papillary microcarcinomas <1 cm, and it is unclear whether results apply to cancers with greater clinical significance.

The reasons for the association between obesity and thyroid cancer risk remain poorly understood. Although no association between serum TSH and thyroid cancer was observed in this study, high serum TSH has been associated with increased thyroid cancer risk in other studies (7) and is thought to promote tumor growth. Hyperinsulinemia is thought to be mechanistically important for the development of some other types of cancer, but no association between fasting insulin levels and thyroid cancer risk was noted in this study. Adipokines and markers of inflammation and oxidative stress were not examined in this study, but are also potential mediators of the effects of obesity on oncogenesis and tumor growth.

Obesity and thyroid cancer rates are both increasing rapidly. It remains to be seen whether there is truly a causal relationship between the two. Prospective studies are needed to better define risks and to elucidate mechanisms for this relationship.

- 1. Polednak AP. Estimating the number of U.S. incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers. Cancer Detect Prev 2008;32:190-9. Epub September 13, 2008.
- 2. Rinaldi S, Lise M, Clavel-Chapelon F, Boutron-Ruault MC, Guillas G, Overvad K, et al. Body size and risk of differentiated thyroid carcinomas: findings from the EPIC study. Int J Cancer 2012;131(6):E1004-E1014. Epub May 14, 2012.
- 3. Almquist M, Johansen D, Björge T, Ulmer H, Lindkvist B, Stocks T, et al. Metabolic factors and risk of thyroid cancer in the Metabolic syndrome and Cancer project (Me-Can). Cancer Causes Control 2011;22:743-51. Epub March 6, 2011.
- 4. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis

- of prospective observational studies. Lancet 2008;371:569-78.
- 5. Engeland A, Tretli S, Akslen LA, Bjørge T. Body size and thyroid cancer in two million Norwegian men and women. Br J Cancer 2006;95:366-70. Epub July 11, 2006.
- 6. Kitahara CM, Platz EA, Freeman LE, Hsing AW, Linet MS, Park Y, Schairer C, Schatzkin A, Shikany JM, Berrington de González A. Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies. Cancer Epidemiol Biomarkers Prev 2011;20:464-72. Epub January 25, 2011.
- 7. McLeod DS, Watters KF, Carpenter AD, Ladenson PW, Cooper DS, Ding EL. Thyrotropin and thyroid cancer diagnosis: a systematic review and doseresponse meta-analysis. J Clin Endocrinol Metab 2012;97:2682-92. Epub May 23, 2012.

Does the Risk of Malignancy Increase When a Thyroid Nodule Is Larger Than 2 cm?

Jerome M. Hershman

Kamran SC, Marqusee E, Kim MI, Frates MC, Ritner J, Peters H, Benson CB, Doubilet PM, Cibas ES, Barletta J, Cho N, Gawande A, Ruan D, Moore FD Jr, Pou K, Larsen PR, Alexander EK. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013;98:564-70. Epub December 28, 2012; doi: 10.1210/jc.2012-2968.

SUMMARY • • • • • • • • • •

Background

In the evaluation of thyroid nodules for malignancy, the size of the nodule has been a cause for concern, mainly because the size—if it is a carcinoma—directly influences the staging. In addition, larger nodules in other organs, such as the adrenal gland, are more likely to be malignant. However, the data on size as a determinant of carcinoma in a thyroid nodule are conflicting (1-3). The current study assesses the impact of nodule size on the risk of cancer by analyzing a large clinical database.

Methods

The records of 4955 consecutive patients referred to Brigham and Women's hospital for evaluation of thyroid nodules during 1995–2009 were reviewed. Nodule size was measured in three dimensions by ultrasonography in all patients. The nodules were biopsied by fine-needle aspiration (FNA), and a cytopathologic diagnosis was made using the Bethesda classification. When patients underwent surgery, the final diagnosis was based on the surgical pathology.

Results

A total of 9339 nodules ≥1 cm were identified, and 7348 (78%) were evaluated by FNA. Those excluded usually had a high cystic component. The mean nodule size was 2.6 cm. The nodules were subdivided into the following groups by size: 1 to 1.9, 2 to 2.9, 3 to 3.9,

and ≥ 4 cm and the percent of nodules in each group was 49%, 27%, 14%, and 11%, respectively. Nodule size had no influence on the distribution of cytology aspirates in each Bethesda category: the percentage of benign aspirates was 72% of nodules 1.0 to 1.9 cm; 67% of nodules 2.0 to 2.9 cm, 65% of nodules 3.0 to 3.9 cm, and 64% of nodules ≥ 4 cm. The nodules in 5% of each size group were classified as malignant. Six percent of the nodules 1 to 1.9 cm were considered suspicious, as were 8 to 9% of nodules in the larger size groups.

Based on surgical pathology, 927 of 7348 nodules (13%) were cancers. Papillary cancers made up 86% and follicular or Hürthle-cell carcinomas 8% of the cancers, the remainder being other cell types. The prevalence of cancer in relation to nodule size was 10.5% of those 1.0 to 1.9 cm, 13.5% of those 2.0 to 2.9 cm, 16.3% of those 3.0 to 3.9 cm, and 15.0% of those ≥4.0 cm. When the nodules 1.0 to 1.9 cm were compared with those ≥2.0 cm, the difference was statistically significant (P<0.01), but there were no differences in prevalence between the larger three groups. Increasing nodule size was associated with a lower proportion of papillary and a higher proportion of follicular or Hürthle-cell cancers as well as the rarer types (anaplastic, medullary, and lymphoma).

Conclusions

Increasing thyroid nodule size impacts cancer risk in a nonlinear manner with a threshold of 2.0 cm.

continued on next page

AMERICAN THYROID ASSOCIATION FOUNDED 1923

Does the Risk of Malignancy Increase When a Thyroid Nodule Is Larger Than 2 cm?

ANALYSIS AND COMMENTARY • • •

This large body of data has been analyzed very carefully and provides more concern for malignancy when the nodule is larger than 2 cm. In addition, the data suggest that larger solid nodules are more likely to be follicular carcinoma as compared with the smaller nodules. However, the literature concerning the size of nodules and the risk of malignancy is controversial. McHenry et al. evaluated 1023 patients with nodules; 673 underwent surgery (3). The mean (±SD) size of the benign nodules was larger, 4.4±2.4 cm as compared with 3.3±2.2 cm for malignant nodules (P<0.05). In an estimate of probability of malignancy based on size, their analysis showed that the likeli-

hood of malignancy significantly decreased nonlinearly with increasing nodule size. The recent paper by Shrestha et al. (reviewed in the November 2012 issue of Clinical Thyroidology) found malignancy in 19.3% of 533 nodules 1.0 to 3.9 cm and 14.3% of 127 nodules ≥ 4 cm (4).

Another reason for concern in evaluating FNA results in large nodules is the possibility of a false negative result due to sampling error. The current study of Kamran et al found that the false negative rate was 1.3% in larger nodules and only slightly less in smaller nodules. Shrestha et al. also reported that false negative rates did not differ significantly based on nodule size (4).

- Raparia K, Min SK, Mody DR, Anton R, Amrikachi M. Clinical outcomes for "suspicious" category in thyroid fine-needle aspiration biopsy: patient's sex and nodule size are possible predictors of malignancy. Arch Pathol Lab Med 2009;133:787-90.
- 2. Mendelson AA, Tamilia M, Rivera J, et al. Predictors of malignancy in preoperative nondiagnostic biopsies of the thyroid. J Otolaryngol Head Neck Surg 2009;38:395-400.
- 3. McHenry CR, Huh ES, Machekano RN. Is nodule size an independent predictor of thyroid malignancy? Surgery 2008;144:1062-8.
- 4. Shrestha M, Crothers BA, Burch HB. The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration: a 10-year study from a single institution. Thyroid 2012;22:1251-6. Epub October 19, 2012.

Diagnostic 131-I SPECT/CT Scans Detect Unsuspected Metastases after Thyroidectomy for DTC

Jerome M. Hershman

Avram AM, Fig LM, Frey KA, Gross MD, Wong KK. Preablation 131-1 scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging? J Clin Endocrinol Metab. February 21, 2013 [Epub ahead of print].

SUMMARY • • • • • • • •

Background

After surgery for differentiated thyroid cancer (DTC), routine postoperative radioiodine scans have largely been abandoned, for several reasons. First, the use of relatively large doses of radioiodine may "stun" residual thyroid tissue and prevent the uptake of a subsequent therapeutic dose. Second, in young patients with tumors < 2 cm and no evidence of metastatic disease, routine thyroid ablation is no longer recommended. Third, in patients who are selected for radioiodine ablation, the posttherapy scan is believed to provide more information because it results from a much larger dose than that used for diagnostic scans. However, advances in scanning technology have resulted in better quality of diagnostic scans. In the present study, the authors prospectively performed postoperative scans in patients with DTC using single-photon-emission computed tomography (SPECT) combined with inline computed tomography (CT) that provides coregistration of tomographic functional data.

Methods

All patients with DTC at the University of Michigan between April 2007 and April 2011 who were referred for postoperative ¹³¹I therapy underwent preablation ¹³¹I planar and SPECT/CT imaging after preparation with a low-iodine diet for 2 weeks under conditions of thyroid hormone withdrawal. Images were acquired 24 hours after the administration of 1 mCi ¹³¹I. Data were analyzed according to TNM staging and age <45

or ≥45 years. The diagnostic scans were evaluated by two experienced nuclear medicine specialists; one was unaware of the clinical data.

Results

Data were acquired on 320 patients; 43% were <45 years of age, and 68% were women. Ninety percent had papillary cancer. Regional nodal metastases were present in 47% of resected specimens.

The two observers agreed on interpretation of the scans in 84% of the cases. In 138 patients younger than age 45, the SPECT/CT detected distant metastases in 5 (4%), restaging them to stage 2, and nodal metastases in 61 (44%), of whom 24 were not considered to have nodal metastases at surgery. In 182 patients \geq 45, the SPECT/CT detected distant metastases in 18 (28%) and nodal metastases in 51 (28%). Incorporation of these findings led to upstaging of the disease in 25% of the older patients.

In 67 patients with tumors of 1 to 2 cm, nodal metastases were found by SPECT/CT in 35 (52%) and distant metastases in 3 (4.5%). In 49 patients with tumors <1 cm, nodal metastases were found in 11 (22%) and distant metastases in 2 (4%).

In 303 patients, the diagnostic scan results were compared with the posttherapy scans. The results were concordant in 92%. In 6%, additional foci were found on the posttherapy scans, but in only 1.4% were new metastatic lesions found.

continued on next page

AMERICAN THYROID ASSOCIATION

Diagnostic 131-1 SPECT/CT Scans Detect Unsuspected Metastases after Thyroidectomy for DTC

Avram AM, et al.

Conclusions

Diagnostic preablation SPECT/CT scans detected regional metastases in 35% of patients and distant

metastases in 8% of patients. This information changed staging in 4% of younger and 25% of older patients.

ANALYSIS AND COMMENTARY • • •

This study could dramatically alter the use of diagnostic ¹³¹I scans after thyroidectomy in postoperative patients with DTC. However, there is one major caveat. The group of patients studied were highly selected because they were referred to a nuclear medicine unit for ¹³¹I ablation therapy, even though 43% were younger patients and less than half had nodal disease. The patients had more aggressive tumors than the usual group of patients with DTC. Pathology showed that 30% had vascular invasion, 63% had capsular invasion, and 26% had positive surgical margins.

The SPEC/CT showed an impressive number of patients with residual nodal disease. The finding of distant metastases on the scans in over one fourth of older patients is very surprising. There was no information provided with regard to how many of these new findings occurred in the patients with more aggressive pathologic results. In addition, there was no information concerning correlation with serum thyroglobulin in this group with distant metastases. Although the scans were read to include the classification of uptake in the thyroid bed, there was no comment on the frequency of this finding.

In patients selected for ¹³¹I ablation, the positive findings on diagnostic SPECT/CT could influence the amount of the dose for ablation. Others have claimed utility for diagnostic ¹³¹I scans before ablation (1). One study reported that SPECT/CT performed after radioablation was much more sensitive than planar imaging and detected nodal involvement in one fourth of patients with papillary thyroid carcinoma (2).

If the improved sensitivity for finding residual disease by SPECT/CT is confirmed in an unselected group of patients with DTC, then the wheel will have come full circle by a return to routine ¹³¹I diagnostic scans in virtually all patients, a practice largely abandoned over a decade ago because of data showing that stimulated thyroglobulin and neck ultrasound are more sensitive diagnostic tools than ¹³¹I scans. In the meantime, this study influences me to consider SPECT/CT for the patient who is classified as low risk and who is not selected for ¹³¹I ablation because a negative result would give the patient a very good prognosis. Of course, cost considerations would influence the decision to use SPECT/CT in such a patient.

- 1. Van Nostrand D, Aiken M, Atkins F, Moreau S, Garcia C, Acio E, Burman K, Wartofsky L. The utility of radioiodine scans prior to iodine 131 ablation in patients with well-differentiated thyroid cancer. Thyroid 2009;19:849-55.
- 2. Mustafa M, Kuwert T, Weber K, Knesewitsch P, Negele T, Haug A, Linke R, Bartenstein P, Schmidt D. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging 2010;37:1462-6. Epub April 1, 2010.

Surgeon-Performed Laryngeal Ultrasound Can Be Used to Screen for Vocal-Cord Palsy before Thyroid Surgery

Cord Sturgeon

Cheng SP, Lee JJ, Liu TP, Lee KS, Liu CL. Preoperative ultrasonography assessment of vocal cord movement during thyroid and parathyroid surgery. World J Surg 2012;36:2509-15.

SUMMARY • • • • • • • • • • • •

Background

Iatrogenic recurrent laryngeal-nerve (RLN) injury is a rare but well recognized and dreaded complication of thyroid or parathyroid surgery. The presence or absence of dysphonia is not a reliable predictor of vocal-cord function in the preoperative setting. Routine preoperative and postoperative laryngoscopy has been advocated by some experts, but remains controversial. Because laryngoscopy can be an invasive and uncomfortable procedure, a noninvasive method of screening patients for impaired vocalcord mobility is desirable. A sonographic method to evaluate vocal-cord mobility would be an ideal inexpensive, painless, and noninvasive screening method. There is a paucity of data on the utility of transcutaneous ultrasound examination of the larvnx as a screening tool to identify laryngeal dysfunction. This study was designed to evaluate the utility of ultrasound as a screening tool for the detection of impaired vocal-cord movement before thyroid or parathyroid surgery.

Methods

This was a single institution prospective study. In the first 6 months (first phase), patients scheduled for thyroid or parathyroid surgery underwent both routine preoperative laryngoscopy by experienced independent otolaryngologists and laryngeal ultrasonography. In the second 6 months of the study (second phase), all patients scheduled for thyroid or parathyroid surgery underwent laryngeal ultrasound first, and only some of these patients were then selec-

tively evaluated by laryngoscopy. Patients with either abnormal vocal-cord movement on laryngeal ultrasound, with dysphonia despite apparently normal laryngeal ultrasound, or whose vocal-cord movement could not be assessed sonographically underwent laryngoscopy. Laryngeal ultrasound was performed by endocrine surgeons and not radiologists. Normal vocal-cord movement was defined as "symmetrically abductive and adductive motion of the true vocal cords during quiet respiration." The results of the laryngeal ultrasound were compared with the findings from laryngoscopy.

Results

In the first phase, 114 patients were evaluated preoperatively. Vocal-cord movement could be assessed sonographically in 82% (n = 93). In 2 of 93, patients the vocal-cord movement was determined to be abnormal on the ultrasound exam, and laryngoscopy revealed a unilateral vocal-cord palsy in both patients. In the second phase, vocal-cord motion was successfully evaluated in 349 of 415 patients (84%). Four patients with abnormal vocal-cord movement were identified sonographically, and each underwent laryngoscopy, which revealed unilateral vocal-cord palsy. For 66 of 415 patients (16%), vocal-cord movement could not be evaluated sonographically. Only 45 of these patients went on to laryngoscopy, and one vocal-cord palsy was identified.

Conclusions

The preoperative recognition of vocal-cord palsy can alert the surgeon to the possibility of an invasive continued on next page

Surgeon-Performed Laryngeal Ultrasound Can Be Used to Screen for Vocal-Cord Palsy before Thyroid Surgery

Cheng SP, et al.

malignancy and might also alter intraoperative management of the central neck. The routine use of preoperative laryngoscopy remains controversial. The selective use of preoperative laryngoscopy might be more cost-effective than routine laryngoscopy. In this study, it was possible for surgeons to sonographically evaluate vocal-cord movement in 84% of preopera-

tive patients. The authors state that physicians who perform cervical ultrasound can easily and quickly learn to perform laryngeal ultrasound and that it can be performed in the office in 1 minute. The authors estimated that nearly two thirds of preoperative laryngoscopies could be avoided by the use of preoperative screening laryngeal ultrasound.

ANALYSIS AND COMMENTARY • • • • •

The preoperative identification of vocal-cord dysfunction may impact surgical decision-making and alter the operative approach for benign and malignant disease. Unfortunately, vocal-cord dysfunction is not reliably ruled out by the absence of dysphonia. This has led some experts to recommend laryngoscopy for all patients who are about to undergo thyroid surgery, regardless of preoperative or postoperative voice quality. This recommendation has been met with some opposition because fiberoptic laryngoscopy is an invasive and costly procedure that is not performed by all surgeons, and it has a fairly low likelihood of identifying vocal-cord dysfunction in the nondysphonic population.

In this study, the success rate for documenting vocal-cord movement was 84%, and only 1.8% of preoperative patients in phase 1 (1.3% overall) were found to have a vocal-cord palsy. The authors postulated that laryngeal ultrasound would be cost-effective and easily adopted by endocrine surgeons. They estimated that approximately two thirds of preoperative laryngoscopies could be avoided by the use of screening laryngeal ultrasound.

Laryngeal ultrasound has been proposed as an alternative to fiberoptic laryngoscopy by these authors and others because it is inexpensive, rapid, noninvasive, and painless and generates an image that can be stored in the medical record. Laryngeal ultrasound to evaluate vocal-cord movement is not widely used, however. The greatest enthusiasm for this technique

was historically in the pediatric population, in whom laryngoscopy is not tolerated without anesthesia (1, 2). The widespread adoption of this technique in the adult population has not occurred largely because of concerns regarding false negative results or the inability to sonographically image the vocal folds.

Several studies have had favorable findings, contributing to enthusiasm for laryngeal ultrasound in the adult population. Dedecius et al. evaluated vocal-cord movement in 50 thyroidectomy patients during the preoperative and postoperative periods with both ultrasound and laryngoscopy. They found that the sonographic findings correlated with the laryngoscopy and concluded that it was a minimally invasive and reproducible method for the identification of postoperative vocal-cord dysfunction (3). Ooi et al. evaluated color Doppler imaging of the vocal cords and determined that it was just as accurate as laryngoscopy in the identification of vocal-cord palsy or paresis (4). Wang et al. evaluated 705 patients with laryngeal ultrasound and found that vocal-cord motion could be assessed in 87% of patients. Interestingly, they found laryngeal ultrasound to be more successful and accurate in female patients. They concluded that larvngeal ultrasound would be an alternative for the evaluation of vocal-cord movement in over 90% of women and about 50% of men (5). Not all studies have shared enthusiasm for laryngeal ultrasound, however. Sidhu et al. evaluated 100 postoperative patients with laryngeal ultrasound in 1999 and found that sensitivity was 62%, specificity was 97%, positive predictive value was 73%, and negative predictive value was continued on next page

Surgeon-Performed Laryngeal Ultrasound Can Be Used to Screen for Vocal-Cord Palsy before Thyroid Surgery

Cheng SP, et al.

95%; they concluded that the false positive and false negative rates were too high to use ultrasound as an alternative to nasopharyngoscopy (6).

There is an increasing demand from patients that medicine be practiced through minimally invasive low-risk procedures. The economics of health care delivery demand that we identify lower-cost alternatives to meet or exceed the standard of care. The culture of safety surrounding health care providers, and surgeons in particular, requires us to document our outcomes and complications. The findings of

Cheng et al. suggest that laryngeal ultrasound might be an expedient, noninvasive, inexpensive, reproducible, and accurate method to interrogate and document vocal-cord mobility in most patients. With the increased availability of compact high-resolution ultrasound machines in the offices of thyroid surgeons, the use of laryngeal ultrasound to evaluate vocal-cord motion is certain to gain momentum. When used correctly, laryngeal ultrasound could accurately screen patients and direct patients who have a higher pretest probability of vocal-cord dysfunction for laryngoscopy.

- 1. Friedman EM. Role of ultrasound in the assessment of vocal cord function in infants and children. Ann,Otology Rhinol Laryngol 1997;106:199-209.
- 2. Garel C, Hassan M, Legrand I, Elmaleh M, Narcy P. Laryngeal ultrasonography in infants and children: pathological findings. Pediatr Radiol 1991;21:164-7.
- 3. Dedecjus M, Adamczewski Z, Brzezinski J, Lewinski A. Real-time, high-resolution ultrasonography of the vocal folds—a prospective pilot study in patients before and

- after thyroidectomy. Langenbecks Arch Surg 2010;395:859-64. Epub July 20, 2010.
- 4. Ooi LL, Chan HS, Soo KC. Color Doppler imaging for vocal cord palsy. Head Neck 1995;17:20-3.
- 5. Wang CP, Chen TC, Yang TL, Chen CN, Lin CF, Lou PJ, et al. Transcutaneous ultrasound for evaluation of vocal fold movement in patients with thyroid disease. Eur J Radiol 2012;81:e288-e291. Epub October 22, 2011.
- 6. Sidhu S, Stanton R, Shahidi S, Chu J, Chew S, Campbell P. Initial experience of vocal cord evaluation using grey-scale, real-time, B-mode ultrasound. ANZ J Surg 2001;71:737-9.

Two single nucleotide polymorphisms (SNPs) in thyroid hormone receptor-alpha may affect the risk of obesity and dyslipidemia

Stephen W. Spaulding

Fernández-Real JM, Corella D, Goumidi L, Mercader JM, Valdés S, Rojo Martínez G, Ortega F, Martinez-Larrad MT, Gómez-Zumaquero JM, Salas-Salvadó J, Martinez González MA, Covas MI, Botas P, Delgado E, Cottel D, Ferrieres J, Amouyel P, Ricart W, Ros E, Meirhaeghe A, Serrano-Rios M, Soriguer F, Estruch R. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show genediet interactions. Int J Obes. February 12, 2013 [Epub ahead of print]. doi:10.1038/ijo.2013.11.

SUMMARY • • • • • • • • •

Background

Thyroid and lipid pathways interact at many levels. The authors of the current paper observed a patient with obesity and hypothyroidism who, while being overreplaced with L-T₄, continued to have bradycardia despite having a high free T₄, an undetectable TSH, and a 40-lb weight loss, although the body-mass index (BMI) remained above 30. They sequenced her entire thyroid hormone receptor-α (THRα) locus, and found a relatively uncommon single nucleotide polymorphism (SNP). The authors then examined the frequency of this mutation in samples from a cohort of patients at high risk for cardiovascular disease. They also examined the frequency of a more common SNP in THR α in two normal cohorts to determine whether either of these SNPs was associated with obesity or serum lipid disorders.

Methods

The authors had access to blood samples collected between 2003 and 2007 from a cohort of 4734 Spaniards at high risk of cardiovascular disease who had at least three risk factors (history of hypertension or dyslipidemia, BMI <25, current smoker or family history of premature cardiovascular disease) or two risk factors plus a diagnosis of type 2 diabetes. Blood samples were also available from a cohort of 3417 healthy Spaniards from four regions of Spain taken between 1996 and 1999, as well as additional samples obtained between

2003 and 2005 from 2139 of the same subjects. Finally, 2325 normal French samples taken between 1995 and 1997 were studied. The samples were analyzed for TSH, free T_4 and free T_3 levels. The two SNPs in THR α were a relatively common SNP at residue (rs) 1568400, which is in linkage disequilibrium with the less common allele at rs12939700 found in the index case. Student's t-test and analysis of variance were used to compare crude differences of means between genotypes, while more complicated analyses were used to assess SNP associations with risks for obesity and high triglycerides, and to assess the interaction between the THR α polymorphisms and fat intake.

Results

In the cohort at high risk for cardiovascular disease, analysis for the SNP at rs12939700 (C/A in the index case) showed that 93% had C/C, 6.8% had C/A and 0.2% had A/A. Those with A/A or A/C were likely to be heavier and to have a BMI > 30 (P = 0.03).

Analysis for the SNP at rs15684000 in the normal Spanish cohort showed that 50% had A/A, 42% had A/G, and 8% had G/G. Those with A/G or G/G had a higher total cholesterol, fasting triglyceride levels, BMI, and larger waist circumference. The higher BMI remained significant after adjusting for age, sex, triglycerides and geographic region. In the subgroup of the same normal subjects who gave samples 6 years later, the risk of having developed obesity over the continued on next page

Two single nucleotide polymorphisms (SNPs) in thyroid hormone receptor-alpha may affect the risk of obesity and dyslipidemia

6-year period was significantly increased in GG homozygotes (odds ratio, 2.93; 95% CI, 1.05 to 6.95) after adjusting for age, sex, education, and thyroid function. Analysis of the normal French cohort detected associations either with BMI or with log-transformed triglyceride levels, depending on whether a G allele was considered dominant or recessive. In the high-cardiovascular-risk group (many of whom were obese), there was no significant association between SNPs at rs1568400 and BMI, but there was a significant inter-

action term between BMI and fat intake (P<0.001). In patients whose saturated fat intake was in the highest tertile, those with G/A or G/G had a significantly higher BMI than those with A/A, after controlling for energy intake and physical activity.

Conclusions

Two THR α gene polymorphisms display a moderate association with obesity, high triglycerides, and/or development of obesity.

ANALYSIS AND COMMENTARY • • •

Differences in the function of THR α and THR β are clearly evident in mice and patients with mutations in the THR genes, and THR α has been implicated in adipocyte growth and adrenergic sensitivity. Studies in vitro and on cells in culture, however, have not shown as much gene specificity, possibly indicating the importance of specific intracellular modifications of the receptors (1). What is more, the cellular responses to THR α expression depend on how the transcripts are spliced. The authors called attention to the fact that the SNP at rs12939700 is located at the end of a sequence that determines whether $THR\alpha$ transcripts will be spliced to make THRα1 mRNA (the active isoform) or to make THRα2 mRNA (the antagonistic isoform). Furthermore, this group of researchers previously studied factors that regulate THRa splicing, so it would be interesting to learn whether the ratio of the two $THR\alpha$ isoforms in the patient's fat differs from normal and/ or whether any of the patient's splicing factors have unusual SNPs or mutations. Obviously, the A/C heterozygosity found at rs12939700 in the index patient is not solely responsible for her clinical features, although it is interesting that patients in the high-cardiovascular-risk group who had A/A or A/C were more likely to be heavier and to have a BMI >30. Additional clinical details on the patient (e.g., cardiovascular responses to exercise, evidence of Hashimoto's thyroiditis, sex hormone-binding globulin levels, etc.) would be interesting to know. Mutations or unusual SNPs in other

genes known to influence thyroid receptor action, such as heterodimerization partners, coactivators, corepressors of THR α , covalent modifiers or cytoplasmic transporters of THR α , as well as thyroid hormone transporters and deiodinases could also be implicated. It is also quite possible that this SNP is not responsible for the associations with obesity but is simply in linkage disequilibrium with another region that is the actual cause of the metabolic changes observed. Plainly, studies on the SNP at rs12939700 need to be repeated in larger samples.

It was not clear whether the index patient was ever genotyped for the SNP at rs15684000, which the authors showed had some associations with increased BMI and triglycerides in two normal cohorts, whereas in the cohort at high risk for cardiovascular disease, the SNP analysis indicated a significant interaction between high saturated fat intake and obesity.

Genomewide association studies have uncovered several dozen gene variants much more highly associated with risk for obesity in the general population than either of the THR α SNPs, including some also known to be associated with thyroid hormone action (e.g., TUB, BNDF) or with thyroid hormone metabolism (e.g., TEB4) (2). Nonetheless, either of the SNPs in THR α reported in the current paper could be involved in the development of obesity indirectly, say in individuals who also have variants in other genes involved in thyroid or lipid pathways. *continued on next page*

Two single nucleotide polymorphisms (SNPs) in thyroid hormone receptor-alpha may affect the risk of obesity and dyslipidemia

References

- 1. Liu YY, Kogai T, Schultz JJ, Mody K, Brent GA. Thyroid hormone receptor isoform-specific modification by small ubiquitin-like modifier (SUMO) modulates thyroid hormone-dependent gene regulation. J Biol Chem 2012;287;:36499-508. Epub August 28, 2012.
- 2. Speliotes EK, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010;42:937-48. Epub October 10, 2010.

We invite you to join the ATA!

Are You Intrigued by the Study of the Thyroid? You Belong in the ATA!

- ATA members are leaders in thyroidology who promote excellence and innovation in clinical care, research, education, and public policy.
- Join us as we advance our understanding of the causes and improve the clinical management of thyroid diseases in this era of rapid pace biomedical discovery.
- A close-knit, collegial group of physicians and scientists, the ATA is dedicated to the reseach and treatment of thyroid diseases. ATA's rich history dates back to 1923 and its members are respected worldwide as leaders in thyroidology.
- The ATA encourages you to apply for membership. We want you to experience the wealth of knowledge and enjoy the benefits of being active in this highly specialized and regarded society. The ATA looks forward to having you as a member!

YOU ARE INVITED TO JOIN US FOR THE

Registration now open. Details available at www.thyroid.org.

Early Bird Registration deadline: July 15, 2013

ATA 2013 Call for Abstracts Submission Dates

Regular Call Abstracts:

Short Call Abstracts:

Site Now Open

Site Opens – August 27, 2013

Site Closes – June 26, 2013

Site Closes – September 10, 2013

Acceptance notification – July 24, 2013

Acceptance notification – September 17, 2013

The American Thyroid Association (ATA) is the leading organization devoted to thyroid biology and managing thyroid disease and thyroid cancer through excellence in clinical care, research, education, and public health. The ATA provides evidence-based clinical management guidelines; leading-edge research findings; multiple research grants; specialized benefits for trainees; and access to thyroid specialists for patients. At the Annual Meeting, attendees earn CME credits, hear innovative talks, participate in interactive sessions, develop professionally with state of the art information, meet with friends and colleagues and have a great time.

Exhibitor and sponsor opportunities available at www.thyroid.org

Not an ATA Member? It's always a good time to join the ATA. Sign up at www.thyroid.org.

6066 Leesburg Pike, Suite 550, Falls Church, VA 22041 USA (703) 998-8890 thyroid@thyroid.org | www.thyroid.org

American Thyroid Association – Dedicated to scientific inquiry, clinical excellence, public service, education, and collaboration

Stay Informed About Thyroid Disease — Become a Friend of the ATA

Let your patients know that they can become Friends of the ATA by signing up to get the latest thyroid health information and to be among the first to know the latest cutting-edge thyroid research of importance to patients, their families and the public.

As a Friend of the ATA we will send you:

- Clinical Thyroidology for Patients -- This publication is a collection of summaries of recently published articles from the medical literature covering the broad spectrum of thyroid disorders.
- The Calendar of Events highlights educational forums and support groups that are organized by members of the Alliance for Thyroid Patient Education. The Alliance member groups consist of: the American Thyroid Association, the Graves' Disease Foundation, the Light of Life Foundation and ThyCa: Thyroid Cancer Survivors' Association, Inc.
- Friends of the ATA e-news, providing up-to-date information on thyroid issues, answers to thyroid questions from leading thyroid experts, and invitations to upcoming patient events.
- Updates on the latest patient resources through the ATA website and elsewhere on the World Wide Web.
- Special e-mail alerts about thyroid topics of special interest for patients and the public.

The American Thyroid Association (ATA) is a nonprofit medical society composed of physicians and scientists who specialize in the research and treatment of thyroid diseases. Dedicated to improving the lives of the millions of Americans of all ages living with thyroid problems, we are strongly committed to serving as a resource for these patients and the public and to promoting the prevention, treatment, and cure of thyroidrelated diseases.

With extensive online resources for thyroid patients, families, and the general public at www.thyroid.org, each year we reach thousands of people who have come to rely on us for health information they can trust.

- Answers to frequently asked questions, or FAQs;
- Brochures on specific thyroid diseases;
- A database of ATA members called "Find a Thyroid Specialist";
- A toll-free telephone number with referrals to patient education materials and support groups; and
- Links to the ATA Alliance for Patient Education; organizations that provide support for understanding and coping with thyroid disease and its treatments.

Visit www.thyroid.org and become a Friend of the ATA.