Stimulating the Uptake of 131I in Multinodular Goiter by Pretreatment with Recombinant Human TSH Improves Patient Outcomes at 5 Years

SUMMARY

BACKGROUND

If obstructive signs or symptoms develop in a patient with multinodular goiter (MNG)—and the surgical risk is deemed acceptable—surgery at a major referral hospital is the treatment of choice (hyperthyroidism, if present, is usually treated first). If surgery is not feasible, 131I can be given to reduce goiter size somewhat, although it initially may cause thyroid swelling and increase the release of thyroid hormone, potentially significant side effects. If the goiter is very large or its uptake is low, large doses of 131I may be required, increasing whole-body radiation and possibly involving the expense of hospitalization. To try to enhance the effectiveness of 131I, a number of centers have tried recombinant human TSH (rhTSH) on an experimental basis. It is given a day before 131I treatment, which increases the uptake of 131I in areas of the gland where uptake is low, makes the radiation more uniform, and increases the retention of 131I in the thyroid. It also increases long-term hypothyroidism. The current paper reports 5-year outcome data from two previously published randomized, double-blind, placebo-controlled studies on selected patients with MNG from an area of Denmark where iodine intake is moderately deficient (1,2).

METHODS

One of the two earlier papers addressed the effects of rhTSH on patients with goiters <100 ml (measured by ultrasound), while the other paper focused on patients with goiters >100 ml (by MRI). Half the patients in both studies received an injection of 0.3 mg of rhTSH 24 hours before 131I was given, while the other half received a placebo injection. The inclusion and exclusion criteria between the two studies differed substantially, as did the 131I doses given. In the first study (1), out of 712 consecutive patents seen from 2002 to 2004 who had “nontoxic” MNG, 57 patients met a variety of inclusion criteria, including having an 131I uptake of 20% or greater, whereas 99 patients with uptakes less than 20% were excluded. Almost half the patients in this study were subclinically hyperthyroid (TSH <0.1 mU/ml). The 131I dose was calculated based on the estimated thyroid volume and the effective 131I half-life: the median dose was 14 mCi in the placebo group and 15.7 mCi in the rhTSH group (the highest dose permitted was 16.2 mCi). After 1 year, the goiters in the placebo group had shrunk by 46%, while those in the rhTSH group had shrunk by 62% (P<0.002). The incidence of hypothyroidism was 5 times greater in the latter patients, who also had 3 times as many adverse events, especially transient hyperthyroidism and cervical discomfort or pain. In the second study, 29 patients with very large nodular goiters who could not or would not undergo surgery were studied (2). Five of the patients had frank hyperthyroidism and were given methimazole until 8 days before the 131I treatment. The patients’ mean baseline 24-hour 131I uptake was about 35%, and the mean TSH was about 0.2 mU/L. The median 131I treatment dose was 41 mCi in the placebo group and was 37 mCi in the rhTSH group. (Two patients in the latter group had their 131I doses restricted to 100 mCi.) After 1 year, the goiters in the placebo group had shrunk from continued on next page
Stimulating the Uptake of 131I in Multinodular Goiter by Pretreatment with Recombinant Human TSH Improves Patient Outcomes at 5 Years

170 ml to 121 ml, while those in the rhTSH group had shrunk from 151 ml to 72 ml. Two patients given rhTSH required 25 mg of prednisolone for thyroid swelling and tenderness, and one was admitted to the hospital for stridor. Only 2 of 14 in the rhTSH group had no adverse events, whereas 7 of 15 in the placebo group had no adverse events. Hypothyroidism had developed in 1 of 15 patients given placebo and in 3 of 14 patients given rhTSH.

RESULTS
Follow-up data were available on 80 of the 86 patients from the two studies. When the data were combined, the placebo groups’ goiters had shrunk another 13% and the rhTSH groups’ goiters had shrunk another 10% after 5 years. “Treatment failures” (cases in which patients required subsequent thyroid surgery or additional 131I treatment) were twice as common in the patients with the large goiters as in those with goiters <100 ml. In the combined placebo groups, 20% (9 of 44) needed additional treatment (surgery in 6, and additional 131I in 3), whereas in the rhTSH groups, only 5% (2 of 42) needed surgery (P<0.02). Since more of the patients receiving placebo needed additional therapy, their mean follow-up period was slightly shorter (65 months) than that for the rhTSH groups (73 months). On a yes/no question concerning overall satisfaction with the initial therapy: 90% of those who had been given rhTSH and 69% of those given placebo answered "yes" (P = 0.025).

CONCLUSIONS
Five years after treating two highly selected groups of patients with 131I, patients with MNG who were also given rhTSH had fewer goiter-related symptoms, fewer of them needed additional therapy, and their satisfaction with the initial therapy was higher. The goiter shrinkage remained superior, but the incidence of hypothyroidism was much greater in those who received rhTSH.

ANALYSIS AND COMMENTARY
The title of the article indicates that only patients with “nontoxic” MNGs were studied, but many patients had subclinical or frank hyperthyroidism. All the patients had a basal 131I uptake of 20% or greater, so their autonomous nodules probably were more active than those in patients with a lower 131I uptake. However, there are many patients with MNG with a 131I uptake less than 20%, so it would be interesting to know whether such patients would also respond to rhTSH in this Danish population. Although the data do not address that question directly, several recent smaller studies from Brazil—where iodine intake from 1998 to 2003 was excessive—obtained similar results. These studies used substantially lower doses of rhTSH (≤0.1 mg), and the patients’ 131I uptakes were below 20%, even after being on low-iodine diets. A study of 28 patients with MNG (average volume >100 ml by helical CT) who had subclinical hyperthyroidism were treated with methimazole for 3 months (3). The methimazole was discontinued 2 weeks before measuring the basal RAI uptake (which generally remained under 20%), and methimazole was discontinued again for 2 weeks preceding the dose of 30 mCi 131I. The decrease in thyroid volume was about 40% at 2 years, as compared with a 15% decrease (statistically insignificant) in patients receiving placebo. A different study on 22 patients with MNG who were euthyroid (none with basal TSH levels below 0.21 mU/ml), who ate a low-iodine diet for 2 weeks before getting 30 mCi 131I, obtained similar results (4). After 1 year, the goiters had shrunk almost 40%, either with a dose of 0.01 mg or 0.1 mg of rhTSH. Overall, giving rhTSH to patients with MNG seems to double the 24-hour uptake of 131I, regardless of whether the rhTSH dose is 0.01 mg or 0.9 mg. In

continued on next page
Stimulating the Uptake of 131I in Multinodular Goiter by Pretreatment with Recombinant Human TSH Improves Patient Outcomes at 5 Years

contrast, both thyroid swelling and thyroid-hormone levels increase as the rhTSH dose increases from 0.1 mg to 0.9 mg in normal subjects (5). Indeed, a more recent study from the same Danish group did use a lower dose of rhTSH (0.1 mg) and showed that it enhances the efficacy of 131I in shrinking goiters more than threefold (6). Given that there is continuing restriction in the availability of rhTSH, and recognizing that it is about 10,000 times more valuable than gold, it would seem appropriate on both clinical and financial grounds to use a smaller dose than the 0.3 mg used in the pair of studies analyzed by the current study. A recent study showed that if rhTSH is reconstituted in PBS containing BSA, its in vitro biologic activity is stable for at least 6 months (7).

It is also worth noting that several other ways to increase the 131I uptake/retention in MNG have been reported. These include: (1) pretreating patients with methimazole to raise TSH levels, then discontinuing the methimazole before the 131I treatment, as mentioned above; (2) giving lithium before and after 131I (8,9); and (3) giving nonradioactive 127I after 131I treatment (10).

— Stephen W. Spaulding, MD

REFERENCES

5. Fast S, Nielsen VE, Bonnema SJ, Hegedüs L. Dose-dependent acute effects of recombinant human TSH (rhTSH) on thyroid size and function: comparison of 0.1, 0.3 and 0.9 mg of rhTSH. Clin Endocrinol (Oxf) 2010;72:411-6. Epub June 8, 2009.

Stimulating the Uptake of 131I in Multinodular Goiter by Pretreatment with Recombinant Human TSH Improves Patient Outcomes at 5 Years

We invite you to join the ATA!

Are You Intrigued by the Study of the Thyroid? You Belong in the ATA!

- ATA members are leaders in thyroidology who promote excellence and innovation in clinical care, research, education, and public policy.

- Join us as we advance our understanding of the causes and improve the clinical management of thyroid diseases in this era of rapid pace biomedical discovery.

- A close-knit, collegial group of physicians and scientists, the ATA is dedicated to the research and treatment of thyroid diseases. ATA’s rich history dates back to 1923 and its members are respected worldwide as leaders in thyroidology.

- The ATA encourages you to apply for membership. We want you to experience the wealth of knowledge and enjoy the benefits of being active in this highly specialized and regarded society. The ATA looks forward to having you as a member!