2012

No published manuscripts to date

2011

ASTAPOVA, I (2011) “Elucidating the in vivo Mechanisms by Which Thyroid Hormone Regulates Energy Expenditure” –7 citations

  1. Astapova I, Hollenberg AN. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta. 2013 Jul;1830(7):3876-81. doi: 10.1016/j.bbagen.2012.07.001. Epub 2012 Jul 16. Review.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=22801336)

KLUBO-GWIEZDZINSKA, J (2011) “The Role of the Translocator Protein (TSPO) in the Thyroid Cancer Response to the Treatment” – 1 citation

  1. Klubo-Gwiezdzinska J, Jensen K, Bauer A, Patel A, Costello J, BurrrrarrK, Wartofsky L, Hardwick MJ, Vasko VV. The expression of trans locator protein in human thyroid cancer and its role in the response of thyroid cancer cells to oxidative stress-f-Endocrinol. 2012 May 29.[Epub ahead of print] (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=22645299)

NUCERA, C (2011) “Targeting BRAFV600E with an orally available selective inhibitor in novel in vitro and in vivo preclinical models of human papillary thyroid cancer” – 10 citations

  1. Nucera C, Pontecorvi Clinical outcome, role of BRAF(V600E), and molecular pathways in papillary thyroid microcarcinoma: is it an indolent cancer or an early stage of papillary thyroid cancer? A.Front Endocrinol (Lausanne). 2012;3:33.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=22649416)
  2. Shaik S, Nucera C, Inuzuka H, Gao D, Garnaas M, Frechette G, Harris L, Wan L, Fukushima H, Husain A, Nose V, Fadda G, Sadow PM, Goessling W, North T, Lawler J, Wei W. SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J Exp Med. 2012 Jul 2;209(7):1289-307. Epub 2012 Jun 18.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=22711876)

STEFAN, M (2011) “Role of interferon alpha in development of AITD: Epigenetic regulation of key genes.” – 14 citations

  1. Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, Conception E, Fadlalla M, Ho K, Tomer Y. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism. J. Biol. Chem. 286:31168-79, 2011.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=21757724 )

2010

BAGHERI-YARMAND, R (2010) “Activating Transcription Factor 4 (ATF4), a novel putative tumor suppressor gene in medullary thyroid cancer” – 5 citations

  1. Bagheri-Yarmand R, Vadlamudi RK, Kumar R. Activating transcription factor 4 overexpression inhibits proliferation and differentiation of mammary epithelium resulting in impaired lactation and accelerated involution. J Biol Chem. 2013 Sep 20;288(38):27517.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12611881)
  2. Bagheri-Yarmand R, Huang SC, Cote GJ, Gagel RF. Novel mechanism of RET-mediated regu lation of cell cycle progression in medullary thyroid cancer. MEN 2010, GUBBIO, Italy, 2010.
  3. Bagheri-Yarmand R, Huang SC, Williams, MD, Cote, GJ, Gagel RF. RET proto-oncogne regulates cell proliferation and apoptosis through repression of ATF4 transcriptional activity in medullary thyroid cancer. Finalist of Cyrus research scholar awards competition. 2011 Research retreat, Division of Internal Medicine, University of Texas, MD Anderson Cancer Center.

CORREA-MEDINA, M. (2010) “Deiodinase type 3 is critical for pancreatic islet development and function”– 8 citations

  1. M. Correa-Madina, J. Molina, Y. Gadea, A. Fachado, M. Murillo, G. Simovic, A. Pileggi, A. Hernandez, H. Edlund, and A. C. Bianco. “The Thyroid Hormone-Inactivating Type III Deiodinase Is Expressed in Mouse and Human -Cells and Its Targeted Inactivation Impairs Insulin Secretion.” Endocrinology 152.10 (2011): 3717-727. Print.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=21828183)

MITTAG, J (2010) “Regulation of Presympathetic Neuronal Activity by Thyroid Hormone”– 5 citations

  1. Mittag J, Lyons DJ, Sällström J, Vujovic M, Dudazy-Gralla S, Warner A, Wallis K, Alkemade A, Nordström K, Monyer H, Broberger C, Arner A, Vennström B. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest. 2013 Jan 2;123(1):509-16Epub 2012 Dec 21.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=23257356 )

PILLI, T (2010) “The role of MADD, an IG20 gene splice variant, and its potential use as therapeutic target in the anaplastic thyroid cancer.”– 2 citations

  1. Turner A, Li LC, Pilli T, Qian L, Wiley EL, Setty S, Christov K, Ganesh L, Maker AV, Li P, Kanteti P, Das Gupta TK, Prabhakar BS. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells. PLoS One. 2013;8(2):e56817Epub 2013 Feb 15.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=23457619)

2009

FRENCH, JD (2009) “CD4+ T Lymphocyte Polarization in Papillary Thyroid Cancer”– 18 citations

  1. 2. J.D. French, Z.J. Weber, D.L. Fretwell, S. Said, J.P. Klopper, and B.R. Haugen. Tumor-Associated Lymphocytes and Increased FoxP3+ Regulatory T Cell Frequency Correlate with More Aggressive Papillary Thyroid Cancer. Poster presentation at the Inflammation in Oncogenesis Keystone Symposium, Keystone, CO, February 2010.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=20207826)
  2. J.D. French, Z.J. Weber, D.L. Fretwell, M.S. Said, and B.R. Haugen. FoxP3+ Regulatory T Cells are Associated with More Aggressive Papillary Thyroid Cancer. Poster presentation at the American Thyroid Association Conference, Palm Beach, FL, September 2009.

MOISE, L (2009) “Induction of Antigen-Specific Tolerance in Autoimmune Thyroiditis”– 15 citations

  1. Moise L, McMurry JA, Buus S, Frey S, Martin WD, De Groot AS. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine. 2009 Oct 30;27(46):6471-9.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19559119)

WALTER, MA (2009) “Somatostatin-coupled Nanoparticles for Imaging and Therapy of Medullary Thyroid Cancer

  1. Ng QKT, Segura T, Ben-Shlomo A, Krause T, Mindt TL and Walter MA. Synthesis, Gallium-68 Labeling and Biological Evaluation of DOTA-, NODAGA- and Desferrioxamine-modified Nanoparticles. J Nano Research 2012;20(1):21-31.

2008

KIMURA, HJ (2008)Macrophage Causes Thyroid Diseases in LMP7 KO Mice: A New Spontaneous Thyroiditis Model”– 43 citations

  1. Iwama S, De Remigis A, Bishop JA, Kimura HJ, Caturegli P. Hürthle cells predict hypothyroidism in interferon-γ transgenic mice of different genetic backgrounds. Endocrinology. 2012 Aug;153(8):4059-66. doi: 10.1210/en.2012-1236. Epub 2012 Jun 19. PMID: 22719056
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=22719056)
  2. Xiao Z, Mohamood AS, Uddin S, Gutfreund R, Nakata C, Marshall A, Kimura H, Caturegli P, Womer KL, Huang Y, Jie C, Chakravarti S, Schneck JP, Yagita H, Hamad AR. Inhibition of Fas ligand in NOD mice unmasks a protective role for IL-10 against insulitis development. Am J Pathol. 2011 Aug;179(2):725-32. doi: 10.1016/j.ajpath.2011.04.016. Epub 2011 Jun 15. PMID: 21718680
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=21718680)
  3. Kimura HJ, Suzuki K, Landek-Salgado MA, Caturegli P, Jounai N, Kobiyama K, Takeshita F. Endocr Metab Immune Disord Drug Targets. Application of innate immune molecules for a new class of drugs: infection, inflammation and beyond. 2011 Mar;11(1):68-75. PMID: 21348819
  4. Landek-Salgado MA, Tzou SC, Kimura H, Caturegli P. J Vis Induction of experimental autoimmune hypophysitis in SJL mice. Exp. 2010 Dec 17;(46). doi:pii: 2182. 10.3791/2182. PMID: 21206467
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=21206467)
  5. Tzou SC, Landek-Salgado MA, Kimura H, Caturegli P. J Vis Preparation of mouse pituitary immunogen for the induction of experimental autoimmune hypophysitis. Exp. 2010 Dec 17;(46). doi:pii: 2181. 10.3791/2181. PMID: 21206466
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=21206466)
  6. Suzuki K, Kimura H, Wu H, Kudo N, Kim WB, Suzuki S, Yoshida A, Caturegli P, Kohn LD. Excess iodide decreases transcription of NIS and VEGF genes in rat FRTL-5 thyroid cells. Biochem Biophys Res Commun. 2010 Mar 5;393(2):286-90. doi: 10.1016/j.bbrc.2010.01.123. Epub 2010 Feb 2. PMID: 20132794
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=20132794)
  7. Caturegli P, Kimura H. A nonclassical model of autoimmune hypothyroidism.Thyroid. 2010 Jan;20(1):3-5. doi: 10.1089/thy.2009.1614. PMID: 20067377
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=20067377 )
  8. Vosters JL, Landek-Salgado MA, Yin H, Swaim WD, Kimura H, Tak PP, Caturegli P, Chiorini JA. Interleukin-12 induces salivary gland dysfunction in transgenic mice, providing a new model of Sjögren’s syndrome. Arthritis Rheum. 2009 Dec;60(12):3633-41. doi: 10.1002/art.24980. PMID: 19950301
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19950301 )
  9. Kimura HJ, Chen CY, Tzou SC, Rocchi R, Landek-Salgado MA, Suzuki K, Kimura M, Rose NR, Caturegli P. Immunoproteasome overexpression underlies the pathogenesis of thyroid oncocytes and primary hypothyroidism: studies in humans and mice. PLoS One. 2009 Nov 17;4(11):e7857. doi: 10.1371/journal.pone.0007857.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19924240 )
  10. Landek-Salgado MA, Gutenberg A, Lupi I, Kimura H, Mariotti S, Rose NR, Caturegli P. Pregnancy, postpartum autoimmune thyroiditis, and autoimmune hypophysitis: intimate relationships.Autoimmun Rev. 2010 Jan;9(3):153-7. doi: 10.1016/j.autrev.2009.06.001. Epub 2009 Jun 16.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19539059 )
  11. Gutenberg A, Bell JJ, Lupi I, Tzou SC, Landek-Salgado MA, Kimura H, Su J, Karaviti LP, Salvatori R, Caturegli P. Pituitary and systemic autoimmunity in a case of intrasellar germinoma. Pituitary. 2011 Dec;14(4):388-94. doi: 10.1007/s11102-009-0187-x. Epub 2009 May 26.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19466616)
  12. Kimura HJ, Rocchi R, Landek-Salgado MA, Suzuki K, Chen CY, Kimura M, Rose NR, Caturegli P. Influence of signal transducer and activator of transcription-1 signaling on thyroid morphology and function. Endocrinology. 2009 Jul;150(7):3409-16. doi: 10.1210/en.2008-1769. Epub 2009 Mar 26.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19325004 )
  13. Chen CY, Kimura H, Landek-Salgado MA, Hagedorn J, Kimura M, Suzuki K, Westra W, Rose NR, Caturegli P. Regenerative potentials of the murine thyroid in experimental autoimmune thyroiditis: role of CD24. Endocrinology. 2009 Jan;150(1):492-9. doi: 10.1210/en.2008-0639. Epub 2008 Sep 18.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=18801910 )

2007

SCHWEPPE, RE (2007)The Role of FAK and Src Signaling in Thyroid Cancer Cells Resistant to MKK1/2 Inhibition”– 24 citations

  1. Schweppe, RE, Kerege, A, Sharma, V, Poczobutt, JM, Gutierrez-Hartmann, A, Grzywa, RL, and BR Haugen. Distinct Genetic Alterations in the MAPK Pathway Dictate Sensitivity of Thyroid Cancer Cells to MKK1/2 Inhibition. 2009. Thyroid. 19: 825-835 [PMID: 19500021].
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19500021)
  2. Schweppe, RE, French, JD, Kerege, AA, Sharma, V, Grzywa, RL, and BR Haugen. Inhibition of Src with AZD0530 Reveals the Src-Focal Adhesion Kinase as a Therapeutic Target in Papillary and Anaplastic Thyroid Carcinoma. 2009. J. Clin. Endocrinol. Metab., 94: 2199-2203 [PMID: 19293266].
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19293266)

2006

REDDI, HV.(2006) “Determination of the Oncogenic Potential of PAX8/PPARy Fusion Protein (PPFP) and Elucidation of its Mechanism of Action in Follicular Thyroid Carcinoma”– 30 citations

  1. Reddi HV, Madde P, Milosevic D, Hackbarth JS, Algeciras-Schimnich A, McIver B, Grebe SKG, Eberhardt NL. 2011. The putative PAX8/PPAR fusion oncoprotein exhibits partial tumor suppressor activity through up-regulation of microRNA-122 and dominant negative PPAR activity. Genes & Cancer. 2:46-55.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=21779480)
  2. Reddi HV, Madde P, Marlow L, Copland JA, McIver B, Grebe SKG, Eberhardt NL. 2010. Expression of the PAX8/PPAR fusion protein is associated with decreased neovascularization in vivo: impact on tumorigenesis and disease prognosis. Genes and Cancer. 1:480-492.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=20827445)
  3. Eberhardt NL, Grebe SKG, McIver B and Reddi HV. 2010. The Role of the PAX8/PPAR Fusion Oncogene in the Pathogenesis of Follicular Thyroid Cancer. Mol Cell Endocrinol. 321:50-6. Epub 2009 Oct 31.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19883731 )
  4. Placzkowski KA, Reddi HV, Grebe SKG, Eberhardt NL and McIver B. 2008. The role of the PAX8/PPARgamma fusion oncogene in thyroid cancer. PPAR Res. Vol 2008:672829. Epub 2008 Oct 29.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=18989374 )

2004

PARANGI, S. (2004) “Antiangiogenic Therapy of Thyroid Cancer”– 62 citations

  1. Nucera C, Porello, A, Antonello ZE, Mekel M Nehs MC, Giordano TJ, Gerald D, Bejamin LE, Priolog C, Puxeddu E, Finn S, Jarzab B, Hodin RA, Pontercorvi A, Nose V, Lawler J, and Parangi, S :B-RafV600E and Thrombospondin-1 Promote Thyroid Cancer Progression. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10649-54. Epub 2010 May 24.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=20498063 )
  2. Nucera C, Nehs MC, Mekel M, Zhang X, Hodin R, Lawler J, Nose V, and Parangi, S: A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid. 2009 Oct;19(10):1077-84.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19772429)
  3. Zhang, XF, Xu J, Lawler J, Terwilliger E and Parangi S: Adeno-Associated Virus-Mediated Antiangiogenic Gene Therapy with Thrombospondin-1 Type 1 Repeats and Endostatin.” Clinical Cancer Research 2007 Jul 1; 13(13):3968-76
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=17606731 )
  4. Mitchell J. and Parangi, S; “Angiogenesis in Benign and Malignant Thyroid Disease”, Mitchell J. and Parangi, S; “Angiogenesis in Benign and Malignant Thyroid Disease”, Thyroid, Volume 15 (6) 494-510, June 2005
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=16029116 )

2003

KNAUF, J. (2003) “Tyrosine kinase receptor oncogenes and prostanoid biosynthesis: Role of RET/PTC-induced activation of PGE2 synthase in thyroid tumor genesis”– 39 citations

  1. Puxeddu E, Mitsutake N, Knauf JA, Moretti S, Kim HW, Seta KA, Brockman D, Myatt L, Millhorn DE, Fagin JA 2003. Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway. J Biol Chem 278:52131-52138.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14555660 )
  2. Knauf JA, Ouyang B, Croyle M, Kimura E, Fagin JA 2003. Acute expression of RET/PTC induces isozyme-specific activation and subsequent downregulation of PKCepsilon in PCCL3 thyroid cells. Oncogene 22:6830-6838.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14534528 )
  3. Knauf JA, Kuroda H, Basu S, Fagin JA 2003. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22:4406-4412.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12853977 )
  4. Wang J, Knauf JA, Basu S, Puxeddu E, Kuroda H, Santoro M, Fusco A, Fagin JA 2003. Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels. Mol Endocrinol 17:1425-1436.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12690093 )

JACOBSON, E. “Molecular determinants of the presentation of immunogenic thyroglobulin peptides by HLA-DR3”

New to the thyroid field; no prior thyroid publications

XU, XIULONG* (2003)“BRAF gene mutation and oncogenesis of papillary thyroid carcinomas”

* ThyCa award – 64 citations

  1. Xu X, Quiros RM, Maxhimer JB, Jiang P, Marcinek R, Ain KB, Platt JL, Shen J, Gattuso P, Prinz RA 2003. Inverse correlation between heparan sulfate composition and heparanase-1 gene expression in thyroid papillary carcinomas: a potential role in tumor metastasis. Clin Cancer Res 9:5968-5979.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14676122 )
  2. Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA 2003. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63:4561-4567.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12907632 )

2002

A.C. BIANCO (2002)”Type 2 deiodinase-mediated intra-cellular thyrotoxicosis in brown adipocytes is critical for energy homeostasis and adaptive thermogenesis in small mammals”– 414 citations

  1. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439:484-489.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=16400329)
  2. Kalaany NY, Gauthier KC, Zavacki AM, Mammen PP, Kitazume T, Peterson WL, Garry DJ, Bianco AC, Mangelsdorf DJ. LXRs regulate the balance between fat storage and oxidation. Cell Metab 2005; 1:231-44.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=16054068 )
  3. Christoffolete MA, Linardi CC, de Jesus L, Ebina KN, Carvalho SD, Ribeiro MO, Rabelo R, Curcio C, Martins L, Kimura ET, Bianco AC 2004. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes
    53:577-584.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14988240 )
  4. Nakayama A, Bianco AC, Zhang CY, Lowell BB, Frangioni JV 2003. Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging. Mol Imaging 2:37-49.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12926236 )
  5. Baqui M, Botero D, Gereben B, Curcio C, Harney JW, Salvatore D, Sorimachi K, Larsen PR, Bianco AC 2003. Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278:1206-1211.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12419801)
  6. Curcio-Morelli C, Zavacki AM, Christofollete M, Gereben B, de Freitas BC, Harney JW, Li Z, Wu G, Bianco AC
    2003. Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J Clin Invest 112:189-196.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12865408 )
  7. Freitas FR, Moriscot AS, Jorgetti V, Soares AG, Passarelli M, Scanlan TS, Brent GA, Bianco AC, Gouveia CH
    2003. Spared bone mass in rats treated with thyroid hormone receptor TR beta-selective compound GC-1. Am J Physiol Endocrinol Metab 285:E1135-E1141.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12965872 )
  8. Kim BW, Zavacki AM, Curcio-Morelli C, Dentice M, Harney JW, Larsen PR, Bianco AC 2003. Endoplasmic reticulum-associated degradation of the human type 2 iodothyronine deiodinase (D2) is mediated via an association between mammalian UBC7 and the carboxyl region of D2. Mol Endocrinol 17:2603-2612.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12933904)

KOPP, P. (2002) “Targeted overexpression of a dominant negative insulin growth factor I (IGFI) in thyroid cells”– 23 citations

  1. Gillam MP, Sidhaye AR, Lee EJ, Rutishauser J, Stephan CW, Kopp P 2004. Functional characterization of pendrin in a polarized cell system. Evidence for pendrin-mediated apical iodide efflux. J Biol Chem 279:13004-
    13010.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14715652 )
  2. Kopp P 2002. Perspective: genetic defects in the etiology of congenital hypothyroidism. Endocrinology 143:2019-2024.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12021164 )

2001

CATUREGLI, P. (2001)“Interleukin-12 and autoimmune thyroiditis”– 18 citations

  1. Caturegli P, Rose NR, Kimura M, Kimura H, Tzou SC 2003. Studies on murine thyroiditis: new insights from organ flow cytometry. Thyroid 13:419-426.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12855008 )
  2. Barin JG, Afanasyeva M, Talor MV, Rose NR, Burek CL, Caturegli P 2003. Thyroid-specific expression of IFN-gamma limits experimental autoimmune thyroiditis by suppressing lymphocyte activation in cervical lymph nodes. J Immunol 170:5523-5529.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12759429 )
  3. Bonita RE, Rose NR, Rasooly L, Caturegli P, Burek CL 2003. Kinetics of mononuclear cell infiltration and cytokine expression in iodine-induced thyroiditis in the NOD-H2h4 mouse. Exp Mol Pathol 74:1-12.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12645626 )
  4. Bonita RE, Rose NR, Rasooly L, Caturegli P, Burek CL 2002. Adhesion molecules as susceptibility factors in spontaneous autoimmune thyroiditis in the NOD-H2h4 mouse. Exp Mol Pathol 73:155-163.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12565790)

PHILIBERT R. “Role of thyroid hormone and TRAP230 in dopaminergic cell survival and differentiation”– 5 citations

  1. Philibert RA, Sandhu HK, Hutton AM, Wang Z, Arndt S, Andreasen NC, Crowe R, Wassink TH 2001. Population- based association analyses of the HOPA12bp polymorphism for schizophrenia and hypothyroidism. Am J Med Genet. 105:130-134.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11424983 )

2000

LIU, Y-Y. (2000) “Thyroid hormone regulation of neural differentiation”– 40 citations

  1. Liu YY, Schultz JJ, Brent GA 2003. A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278:38913-38920.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12869545)
  2. Liu YY, Brent GA 2002. A complex deoxyribonucleic acid response element in the rat Ca(2+)/calmodulin- dependent protein kinase IV gene 5′-flanking region mediates thyroid hormone induction and chicken ovalbumin upstream promoter transcription factor 1 repression. Mol Endocrinol 16:2439-2451.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12403833 )
  3. Liu YY, Tachiki KH, Brent GA 2002. A targeted thyroid hormone receptor alpha gene dominant-negative mutation (P398H) selectively impairs gene expression in differentiated embryonic stem cells. Endocrinology
    143:2664-2672.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12072400 )

RINGEL, M. “The role of AKT in thyroid tumorigenesis”– 91 citations

  1. Ringel MD 2004. Molecular detection of thyroid cancer: differentiating “signal” and “noise” in clinical assays. J Clin Endocrinol Metab 89:29-32.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=http://www.ncbi.nlm.nih.gov/pubmed/14715823 )
  2. Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, Bernet V, Burman KD, Kohn LD, Saji M
    2001. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 61:6105-6111.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11507060 )
  3. Ringel MD, Hardy E, Bernet VJ, Burch HB, Schuppert F, Burman KD, Saji M 2002. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J Clin Endocrinol Metab 87:2399-
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11994395)
  4. Saito J, Kohn AD, Roth RA, Noguchi Y, Tatsumo I, Hirai A, Suzuki K, Kohn LD, Saji M, Ringel MD 2001. Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling. Thyroid 11:339-351.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11349832)

1999

MARINO, M. “Megalin (gp330) in thyroid physiology and pathology”– 17 citations

  1. Lisi S, Chiovato L, Pinchera A, Marcocci C, Menconi F, Morabito E, Altea MA, McCluskey RT, Marino M
    2003. Impaired thyroglobulin (Tg) secretion by FRTL-5 cells transfected with soluble receptor associated protein
    (RAP): evidence for a role of RAP in the Tg biosynthetic pathway. J Endocrinol Invest 26:1105-1110. ? OMIT
  2. Marino M, Lisi S, Pinchera A, Chiovato L, McCluskey RT 2003. Targeting of thyroglobulin to transcytosis following megalin-mediated endocytosis: evidence for a preferential pH-independent pathway. J Endocrinol Invest 26:222-229.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=http://www.ncbi.nlm.nih.gov/pubmed/12809172 )
  3. Marino M, McCluskey RT 2000. Role of thyroglobulin endocytic pathways in the control of thyroid hormone release. Am J Physiol Cell Physiol 279:C1295-C1306.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11029276 )
  4. Marino M, Chiovato L, Mitsiades N, Latrofa F, Andrews D, Tseleni-Balafouta S, Collins AB, Pinchera A, McCluskey RT 2000. Circulating thyroglobulin transcytosed by thyroid cells in complexed with secretory components of its endocytic receptor megalin. J Clin Endocrinol Metab 85:3458-3467.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=http://www.ncbi.nlm.nih.gov/pubmed/10999849 )
  5. Marino M, McCluskey RT 2000. Megalin-mediated transcytosis of thyroglobulin by thyroid cells is a calmodulin-dependent process. Thyroid 10:461-469.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=http://www.ncbi.nlm.nih.gov/pubmed/10907988 )
  6. Marino M, Zheng G, Chiovato L, Pinchera A, Brown D, Andrews D, McCluskey RT 2000. Role of megalin (gp330) in transcytosis of thyroglobulin by thyroid cells. A novel function in the control of thyroid hormone release. J Biol Chem 275:7125-7137.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10702280 )

ZAVACHI, A.M. “Regulation of thyroid hormone responsive genes by the nuclear receptor RIP 14″– 70 citations

  1. Kim BW, Zavacki AM, Curcio-Morelli C, Dentice M, Harney JW, Larsen PR, Bianco AC 2003. Endoplasmic reticulum-associated degradation of the human type 2 iodothyronine deiodinase (D2) is mediated via an association between mammalian UBC7 and the carboxyl region of D2. Mol Endocrinol 17:2603-2612.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12933904 )
  2. Curcio-Morelli C, Zavacki AM, Christofollete M, Gereben B, de Freitas BC, Harney JW, Li Z, Wu G, Bianco AC 2003. Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J Clin Invest 112:189-196.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12865408)
  3. Curcio-Morelli C, Gereben B, Zavacki AM, Kim BW, Huang S, Harney JW, Larsen PR, Bianco AC 2003. In vivo dimerization of types 1, 2, and 3 iodothyronine selenodeiodinases. Endocrinology 144:937-946.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12586771 )

1998

TOMER, Y. (1998) “Mutational and functional analysis of candidate susceptibility Genes in Graves’ disease”– 130 citations

  1. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y 2003. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A 100:15119-15124.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14657345 )
  2. Ban Y, Davies TF, Greenberg DA, Kissin A, Marder B, Murphy B, Concepcion ES, Villanueva RB, Barbesino G, Ling V, Tomer Y 2003. Analysis of the CTLA-4, CD28, and inducible costimulator (ICOS) genes in autoimmune thyroid disease. Genes Immun 4:586-593.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14647199)
  3. Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, Davies TF 2003. Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole-genome screening in a data set of 102 multiplex families. Am J Hum Genet 73:736-747.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12973666)
  4. Ban Y, Tomer Y 2003. The contribution of immune regulatory and thyroid specific genes to the etiology of Graves’ and Hashimoto’s diseases. Autoimmunity 36:367-379.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14669944)
  5. Tomer Y, Concepcion E, Greenberg DA 2002. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 12:1129-1135.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12593727 )

MARIASH, C. (1998) “Thyroid hormone deficiency during fetal and early childhood development”– 45 citations

  1. Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Schoonover CM, Seibel MM, Jolson DM, Stack MJ, Rahman RJ, Jones SA, Mariash CN, Anderson GW. Endocrinology. 2004 Nov;145(11):5013-20. Epub 2004 Jul 15.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=15256491)
  2. Campbell MC, Anderson GW, Mariash CN 2003. Human spot 14 glucose and thyroid hormone response: A characterization and thyroid hormone response element identification. Endocrinology 144:5242-5248.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12960053 )
  3. Ota Y, Mariash CN 2003. Paradoxical triiodothyronine suppression of S14 transcription in permanent hepatic cell lines. Thyroid 13:437-445.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12855010)
  4. Jones SA, Jolson DM, Cuta KK, Mariash CN, Anderson GW 2003. Triiodothyronine is a survival factor for developing oligodendrocytes. Mol Cell Endocrinol 199:49-60.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12581879 )
  5. Zhu XG, Park KS, Kaneshige M, Bhat MK, Zhu Q, Mariash CN, McPhie P, Cheng SY 2000. The orphan nuclear receptor Ear-2 is a negative coregulator for thyroid hormone nuclear receptor function. Mol Cell Biol 20:2604-2618.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10713182)
  6. Liu B, Li W, Mariash CN. 1999. Two different gene elements are required for glucose regulation of S14 transcription. Mol Cell Endocrinol. 148:11-19.
    (http://www.ncbi.nlm.nih.gov/pubmed/23166811)
  7. Anderson GW, Larson RJ, Oas DR, Sandhofer CR, Schwartz HL, Mariash CN, Oppenheimer JH. 1998 Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. 1998 J Biol Chem. 273:16391-16399.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9632703 )
  8. Purkinje cell protein-2 cis-elements mediate repression of T3-dependent transcriptional activation. Anderson GW, Hagen SG, Larson RJ, Strait KA, Schwartz HL, Mariash CN, Oppenheimer JH. Mol Cell Endocrinol. 1997 Jul 4;131(1):79-87.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9256366)

WOODMANSEE, W. (1998) “Thyroid hormone regulation of mouse somatostatin 5 receptor promoter”– 9 citations

  1. Gordon DF, Woodmansee WW, Black JN, Dowding JM, Bendrick-Peart J, Wood WM, Ridgway EC 2002. Domains of Pit-1 required for transcriptional synergy with GATA-2 on the TSH beta gene. Mol Cell Endocrinol 196:53-66.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12385825)
  2. Woodmansee WW, Mouser RL, Gordon DF, Dowding JM, Wood WM, Ridgway EC 2002. Mutational analysis of the mouse somatostatin receptor type 5 gene promoter. Endocrinology 143:2268-2276.
  3. Wood WM, Sarapura VD, Dowding JM, Woodmansee WW, Haakinson DJ, Gordon DF, Ridgway EC 2002. Early gene expression changes preceding thyroid hormone-induced involution of a thyrotrope tumor. Endocrinology 143:347-359.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11796486)

KIM, S.-W. (1998) “Exploring the mechanism of thyroid hormone dependent gene regulation”– 88 citations

  1. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW, Larsen PR, Bianco AC. 2001. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest. 2001. 108:1379-1385.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11696583)
  2. Bartha T, Kim SW, Salvatore D, Gereben B, Tu HM, Harney JW, Rudas P, Larsen PR. 2000. Characterization of the 5′-flanking and 5′-untranslated regions of the cyclic adenosine 3′,5′-monophosphate-responsive human type 2 iodothyronine deiodinase gene. Endocrinology. 2000. 141:229-237.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10614643)
  3. Kim SW, Harney JW, Larsen PR 1998. Studies of the hormonal regulation of type 2 5′-iodothyronine deiodinase messenger ribonucleic acid in pituitary tumor cells using semiquantitative reverse transcription- polymerase chain reaction. Endocrinology 139:4895-4905.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9832426 )

BIESIADA, E. (1998) “Molecular mechanisms for thyroid hormone regulation of motor neuronal process growth”– 13 citations

  1. Gianino S, Stein SA, Li H, Lu X, Biesiada E, Ulas J, Xu XM. 1999. Postnatal growth of corticospinal axons in the spinal cord of developing mice. Brain Res Dev Brain Res 112:189-204.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9878731)

1997

BURMEISTER, L. (1997) “Thyroid hormone dependent modulation of brain function: A PET Study”– 27 citations

  1. Burmeister LA, Ganguli M, Dodge HH, Toczek T, DeKosky ST, Nebes RD 2001. Hypothyroidism and cognition: preliminary evidence for a specific defect in memory. Thyroid 11:1177-1185.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12186506 )
  2. Lee E, Chen P, Rao H, Lee J, Burmeister LA 1999. Effect of acute high dose dobutamine administration on serum thyrotrophin (TSH). Clin Endocrinol (Oxf) 50:487-492.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10468908)
  3. Zou L, Burmeister LA, Styren SD, Kochanek PM, DeKosky ST 1998. Up-regulation of type 2 iodothyronine deiodinase mRNA in reactive astrocytes following traumatic brain injury in the rat. J Neurochem 71:887-890.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9681483)
  4. Burmeister LA, Pachucki J, St Germain DL 1997. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9389506)

KOIBUCHI, N. “Thyroid hormone receptor and RORalpha action on neurotrophin gene expression in the developing cerebellum”– 47 citations

  1. Miyazaki W, Iwasaki T, Takeshita A, Kuroda Y, Koibuchi N 2004. Polychlorinated biphenyls (PCBs) suppress thyroid hormone (TH) receptor (TR)-mediated transcription through a novel mechanism. J Biol Chem (In press)
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=14985366)
  2. Vasudevan N, Koibuchi N, Chin WW, Pfaff DW 2001. Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Brain Res Mol Brain Res 95:9-17.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11687272)
  3. Kia HK, Krebs CJ, Koibuchi N, Chin WW, Pfaff DW 2001. Co-expression of estrogen and thyroid hormone receptors in individual hypothalamic neurons. J Comp Neurol 437:286-295.
  4. Koibuchi N, Yamaoka S, Chin WW 2001. Effect of altered thyroid status on neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid 11:205-210.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11327610)
  5. Martinez dA, Koibuchi N, Chin WW 2000. Coactivator and corepressor gene expression in rat cerebellum during postnatal development and the effect of altered thyroid status. Endocrinology 141:1693-1698.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10803578)
  6. Koibuchi N, Fukuda H, Chin WW 1999. Promoter-specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum. Endocrinology 140:3955-3961.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10465264)
  7. Koibuchi N, Liu Y, Fukuda H, Takeshita A, Yen PM, Chin WW 1999. ROR alpha augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology 140:1356-1364.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10067863)

LEE, S.L. (1997) “Novel and multi-disciplinary approach to understanding the physiological regulation by thyroid hormone of the TRH neurones in the paraventricular nucleus of the hypothalamus”– 1 citation

  1. Fragner P, Lee SL, Aratan dL 2001. Differential regulation of the TRH gene promoter by triiodothyronine and dexamethasone in pancreatic islets. J Endocrinol 170:91-98.
  2. Luo LG, Lee SL, Lechan RM, Jackson IM 2001. Effect of preproTRH antisense on thyrotropin-releasing hormone synthesis and viability of cultured rat diencephalic neurons. Endocrine 15:79-85.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11577700 )

PUYMIRAT, J. (1997) “Physiopathology of brain dysfunctions in congenital hypothyroidism”– 19 citations

  1. Martel J, Cayrou C, Puymirat J 2002. Identification of new thyroid hormone-regulated genes in rat brain neuronal cultures. Neuroreport 13:1849-1851.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12395077 )
  2. Cayrou C, Denver RJ, Puymirat J 2002. Suppression of the basic transcription element-binding protein in brain neuronal cultures inhibits thyroid hormone-induced neurite branching. Endocrinology 143:2242-2249.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12021188)
  3. Baas D, Puymirat J, Sarlieve LL 1998. Posttranscriptional regulation of oligodendroglial thyroid hormone (T3) receptor beta 1 by T3. Int J Dev Neurosci 16:461-467.
    (http://www.ncbi.nlm.nih.gov/pubmed/18634612)
  4. Nobrega JN, Raymond R, Puymirat J, Belej T, Joffe RT 1997. Regional changes in beta1 thyroid hormone receptor immunoreactivity in rat brain after thyroidectomy. Brain Res 761:161-164.

1996

HAUSER, P. (1996) “A quantitative study of brain structures in subjects with resistance to thyroid hormone”– 13 citations

  1. Phillips SA, Rotman-Pikielny P, Lazar J, Ando S, Hauser P, Skarulis MC, Brucker-Davis F, Yen PM 2001. Extreme thyroid hormone resistance in a patient with a novel truncated TR mutant. J Clin Endocrinol Metab.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11701667)
  2. Hauser P, McMillin JM, Bhatara VS 1998. Resistance to thyroid hormone: implications for neurodevelopmental research on the effects of thyroid hormone disruptors. Toxicol Ind Health 14:85-101.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9460171)
  3. Hauser P, Soler R, Brucker-Davis F, Weintraub BD 1997. Thyroid hormones correlate with symptoms of hyperactivity but not inattention in attention deficit hyperactivity disorder. Psychoneuroendocrinology 22:107-114.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=9149332)

ROVET, J. (1996) “Early sequel of abnormal intrauterine and postnatal thyroid hormone exposure”– 13 citations

  1. Zoeller RT, Bigelow C, Rovet J 2004. Lack of a relation between human neonatal thyroxine and pediatric neurobehavioral disorders: neonatal total thyroxine is not a good proxy measure of maternal thyroid hormone insufficiency. Thyroid 14:239-241.
    (http://www.ncbi.nlm.nih.gov/pubmed/20005050 )
  2. Rovet J 2003. Long-term follow-up of children born with sporadic congenital hypothyroidism. Ann Endocrinol
  3. Till C, Koren G, Rovet JF 2002. Agreement between prospective and retrospective reports of maternal exposure to chemicals during pregnancy. J Occup Environ Med 44:708-713.
    (http://www.ncbi.nlm.nih.gov/pubmed/14698935)
  4. Song SI, Daneman D, Rovet J 2001. The influence of etiology and treatment factors on intellectual outcome in congenital hypothyroidism. J Dev Behav Pediatr 22:376-384.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11773802)
  5. Mirabella G, Feig D, Astzalos E, Perlman K, Rovet JF 2000. The effect of abnormal intrauterine thyroid hormone economies on infant cognitive abilities. J Pediatr Endocrinol Metab 13:191-194.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10711665)
  6. Magee LA, Nulman I, Rovet JF, Koren G 1999. Neurodevelopment after in utero amiodarone exposure. Neurotoxicol Teratol 21:261-265.

PAVLIDES, C. (1996) “Developmental changes in hippocampal physiology and synaptic plasticity: Effects of altered thyroid state during the perinatal period”– 187 citations

  1. Caria, M. A., Dratman, M. B., Kow, L.-M., Mameli, O. & Pavlides, C. Thyroid hormone action: nongenomic modulation of neuronal excitability in the hippocampus. J Neuroendocrinol 21, 98–107 (2009)
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=19076268)
  2. Yamada K, McEwen BS, Pavlides C 2003. Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats. Exp Brain Res 152:52-59.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12879172)
  3. Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C 2002. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye- movement sleep. J Neurosci 22:10914-10923.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12486186)
  4. Pavlides C, Nivon LG, McEwen BS 2002. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12:245-257.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=12000121 )
  5. Pavlides, C., Westlind-Danielsson, A. I., Nyborg, H. & McEwen, B. S. Neonatal hyperthyroidism disrupts hippocampal LTP and spatial learning. Exp Brain Res 85, 559–564 (1991)
    (http://www.ncbi.nlm.nih.gov/pubmed/21571617 )
  6. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M 2000. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A 97:14731-14736.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=11121072)
  7. Pavlides C, McEwen BS 1999. Effects of mineralocorticoid and glucocorticoid receptors on long-term potentiation in the CA3 hippocampal field. Brain Res 851:204-214.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10642845 )
  8. Jellinck PH, Pavlides C, Sakai RR, McEwen BS 1999. 11beta-hydroxysteroid dehydrogenase functions reversibly as an oxidoreductase in the rat hippocampus in vivo. J Steroid Biochem Mol Biol 71:139-144.
  9. Ribeiro S, Goyal V, Mello CV, Pavlides C 1999. Brain gene expression during REM sleep depends on prior waking experience. Learn Mem 6:500-508.
    (http://www.ncbi.nlm.nih.gov/pubmed?linkname=pubmed_pubmed_citedin&from_uid=10541470)